Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{\text{x}}-\sqrt{y}=a\); \(\sqrt{y}-\sqrt{z}=b\); \(\sqrt{z}-\sqrt{x}=c\)
\(\Rightarrow a+b+c=0\). Ta sẽ chứng minh : \(a^3+b^3+c^3=3abc\)
Ta có : \(a+b+c=0\Rightarrow a=-\left(b+c\right)\Rightarrow a^3=-\left(b+c\right)^3\)
\(\Rightarrow a^3=-\left[b^3+c^3+3bc\left(b+c\right)\right]\Rightarrow a^3+b^3+c^3=-3bc\left(-a\right)=3abc\)
Mặt khác, ta lại có : \(a^3+b^3+c^3=0\left(gt\right)\Rightarrow3abc=0\Rightarrow abc=0\)
\(\Rightarrow a=0\)hoặc \(b=0\)hoặc \(c=0\)
Tu do de dang giai tiep bai toan!
Ta có : \(3\sqrt{xyz}=\sqrt{x}^2+\sqrt{y}^3+\sqrt{z}^3\ge3\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}=3\sqrt{x}\sqrt{y}\sqrt{z}=3\sqrt{xyz}.\)
Dấu = xảy ra
=> x =y =z
=> A = (1+1)(1+1)(1+1) =8
mk thấy nó sai sai . Tại sao 3\(\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}\) = 3\(\sqrt{x}\sqrt{y}\sqrt{z}\)
ráng làm nốt rồi đi ngủ thoyy
1.
a) ĐK: \(x\ge2\)
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\varnothing\end{matrix}\right.\)
Vậy...
b) \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+\left(x+8\right)-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x-1\right)\sqrt{x+8}+\left(x+8\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}-x+1\right)\left(2x+1-\sqrt{x+8}+x-1\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+8}+2\right)\left(3x-\sqrt{x+8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{x+8}\\3x=\sqrt{x+8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\)
Vậy...
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
Nhân cả 2 vế với \(\sqrt{2}\) ta được :
\(pt\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)
Ta có : \(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)
\(=\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x-1}+1+1-\sqrt{2x-1}\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{2x-1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le1\)
2) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\cdot\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: \(x=-y\Leftrightarrow x^{29}=-y^{29}\Leftrightarrow x^{29}+y^{29}=0\)
Khi đó \(B=0\cdot\left(x^{11}+y^{11}\right)\cdot\left(x^{2013}+y^{2013}\right)=0\)
Tương tự 2 trường hợp còn lại ta đều được \(B=0\)
Vậy \(B=0\)
Ta có
\(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left[4\left(4-y-z\right)+yz\right]}\)
\(=\sqrt{x\left(4\left(x+\sqrt{xyz}\right)+yz\right)}\)
\(=\sqrt{4x^2+4x\sqrt{xyz}+xyz}\)
\(=2x+\sqrt{xyz}\)
Khi đó \(T=2\left(x+y+z\right)+3\sqrt{xyz}-\sqrt{xyz}=2.4=8\)
https://olm.vn/hoi-dap/tim-kiem?id=199649&subject=1&q=+++++++++++Cho+x,y,z%3E0.+Th%E1%BB%8Fa+m%C3%A3n:+x+y+z+%E2%88%9Axyz=4++T%C3%ADnh+Gi%C3%A1+tr%E1%BB%8B+c%E1%BB%A7a+bi%E1%BB%83u+th%E1%BB%A9c:A=%E2%88%9Ax(4%E2%88%92y)(4%E2%88%92z)+%E2%88%9Ay(4%E2%88%92z)(4%E2%88%92x)+%E2%88%9Az(4%E2%88%92x)(4%E2%88%92y)%E2%88%92%E2%88%9Axyz++++++++++
Bạn tự tham khảo nhé
nhận liên hợp ta có \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)
mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)
==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)
tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)
trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y
đến đây ok rùi nhé bạn
Lời giải:
Ta có:
\(A=\sqrt{(x+y)(y+z)(z+x)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
\(A=\frac{(y+z)\sqrt{(x+y)(x+z)}}{x}+\frac{(z+x)\sqrt{(y+z)(y+x)}}{y}+\frac{(x+y)\sqrt{(z+x)(z+y)}}{z}\)
Áp dụng BĐT Bunhiacopxky:
\((x+y)(x+z)\geq (x+\sqrt{yz})^2\) và tương tự với những biểu thức khác suy ra:
\(A\geq \frac{(y+z)(x+\sqrt{yz})}{x}+\frac{(z+x)(y+\sqrt{xz})}{y}+\frac{(x+y)(z+\sqrt{xy})}{z}\)
hay \(A\geq 2(x+y+z)+\frac{(y+z)\sqrt{yz}}{x}+\frac{(z+x)\sqrt{zx}}{y}+\frac{(x+y)\sqrt{xy}}{z}\)
hay \(A\geq 2(x+y+z)+\underbrace{\frac{yz(y+z)\sqrt{yz}+xz(x+z)\sqrt{xz}+xy(x+y)\sqrt{xy}}{xyz}}_{M}\)
Đặt \((x,y,z)=(a^2,b^2,c^2)\)
Khi đó: \(M=\frac{a^3b^3(a^2+b^2)+b^3c^3(b^2+c^2)+c^3a^3(a^2+c^2)}{a^2b^2c^2}\)
Áp dụng BĐT AM-GM:
\(a^5b^3+a^3b^5\geq 2\sqrt{a^8b^8}=2a^4b^4\)
\(b^5c^3+c^5b^3\geq 2b^4c^4\)
\(c^5a^3+a^5c^3\geq 2c^4a^4\)
\(\Rightarrow a^3b^3(a^2+b^2)+b^3c^3(b^2+c^2)+c^3a^3(c^2+a^2)\geq 2(a^4b^4+b^4c^4+c^4a^4)\) (1)
(cộng các BĐT theo vế)
Tiếp tục AM-GM:
\(a^4b^4+b^4c^4\geq 2a^2b^4c^2; b^4c^4+c^4a^4\geq 2a^2b^2c^4; c^4a^4+a^4b^4\geq 2a^4b^2c^2\)
\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)\) (2)
Từ\((1); (2)\Rightarrow a^3b^3(a^2+b^2)+b^3c^3(b^2+c^2)+c^3a^3(c^2+a^2)\geq 2a^2b^2c^2(a^2+b^2+c^2)\)
\(\Rightarrow M\geq 2(a^2+b^2+c^2)=2(x+y+z)\)
Do đó: \(A\geq 2(x+y+z)+M\geq 4(x+y+z)\Leftrightarrow A\geq 4\sqrt{2}\)
Vậy \(A_{\min}=4\sqrt{2}\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)
Lời giải:
Ta có:
A=√(x+y)(y+z)(z+x)(√y+zx+√z+xy+√x+yz)
A=(y+z)√(x+y)(x+z)x+(z+x)√(y+z)(y+x)y+(x+y)√(z+x)(z+y)z
Áp dụng BĐT Bunhiacopxky:
(x+y)(x+z)≥(x+√yz)2 và tương tự với những biểu thức khác suy ra:
A≥(y+z)(x+√yz)x+(z+x)(y+√xz)y+(x+y)(z+√xy)z
hay A≥2(x+y+z)+(y+z)√yzx+(z+x)√zxy+(x+y)√xyz
hay A≥2(x+y+z)+yz(y+z)√yz+xz(x+z)√xz+xy(x+y)√xyxyz M
Đặt (x,y,z)=(a2,b2,c2)
Khi đó: M=a3b3(a2+b2)+b3c3(b2+c2)+c3a3(a2+c2)a2b2c2
Áp dụng BĐT AM-GM:
a5b3+a3b5≥2√a8b8=2a4b4
b5c3+c5b3≥2b4c4
c5a3+a5c3≥2c4a4
⇒a3b3(a2+b2)+b3c3(b2+c2)+c3a3(c2+a2)≥2(a4b4+b4c4+c4a4) (1)
(cộng các BĐT theo vế)
Tiếp tục AM-GM:
a4b4+b4c4≥2a2b4c2;b4c4+c4a4≥2a2b2c4;c4a4+a4b4≥2a4b2c2
⇒a4b4+b4c4+c4a4≥a2b2c2(a2+b2+c2) (2)
Từ(1);(2)⇒a3b3(a2+b2)+b3c3(b2+c2)+c3a3(c2+a2)≥2a2b2c2(a2+b2+c2)
⇒M≥2(a2+b2+c2)=2(x+y+z)
Do đó: A≥2(x+y+z)+M≥4(x+y+z)⇔A≥4√2
Vậy Amin=4√2⇔x=y=z=√23