Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)
Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)
Ta có \(xy+yz+xz=\frac{2^2-18}{2}=-7\)
\(x+y+z=2\)=> \(z-1=-x-y+1\)
=> \(\frac{1}{xy+z-1}=\frac{1}{xy-x-y+1}=\frac{1}{\left(x-1\right)\left(y-1\right)}\)
Tương tự \(\frac{1}{yz+x-1}=\frac{1}{\left(y-1\right)\left(z-1\right)};\frac{1}{xz+y-1}=\frac{1}{\left(z-1\right)\left(x-1\right)}\)
=> \(S=\frac{x+y+z-3}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=-\frac{1}{xyz-\left(yz+xy+xz\right)+\left(x+y+z\right)-1}\)
\(=\frac{-1}{-1+7+2-1}=-\frac{1}{7}\)
Vậy \(S=-\frac{1}{7}\)
_Solution:
Prove with Cauchy-Schwarz inequality engel form, we have:
\(A=\frac{1}{x^3+3xy^2}+\frac{1}{y^3+3x^2y}\ge\frac{4}{x^3+y^3+3xy^2+3x^2y}\)
\(A\ge\frac{4}{\left(x+y\right)^3}\)
Other way: \(x+y\le1\Rightarrow\left(x+y\right)^3\le1\Rightarrow\frac{1}{\left(x+y\right)^3}\ge1\)
\(\Rightarrow A\ge4\) (proof)
We have ''='' \(\Leftrightarrow x=y=\frac{1}{2}\).
Ta có đánh giá: \(\frac{1}{x^2+x}\ge\frac{5-3x}{4}\) \(\forall x>0\)
Thật vậy, BĐT tương đương:
\(\Leftrightarrow4\ge\left(x^2+x\right)\left(5-3x\right)\)
\(\Leftrightarrow3x^3-2x^2-5x+4\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(3x+4\right)\ge0\) (luôn đúng \(\forall x>0\))
Tương tự ta có: \(\frac{1}{y^2+y}\ge\frac{5-3y}{4}\) ; \(\frac{1}{z^2+z}\ge\frac{5-3z}{4}\)
Cộng vế với vế: \(P\ge\frac{15-3\left(x+y+z\right)}{4}=\frac{15-9}{4}=\frac{3}{2}\)
\(P_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
Ta có:\(10=2xyz\)
=> \(P=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+10}+\frac{10z}{10z+yz+10}\)
\(=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+2xyz}+\frac{2xyz^2}{2xyz^2+yz+2xyz}\)
\(=\frac{1}{2x+2xz+1}+\frac{2x}{1+2x+2xz}+\frac{2xz}{2xz+1+2x}\)
\(=1\)
Vậy P=1
Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow P\ge\frac{1}{2}\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2=\frac{1}{2}\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2\)
\(\Rightarrow P\ge\frac{1}{2}\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2=18\)
\(\Rightarrow P_{min}=18\) khi \(x=y=\frac{1}{2}\)
+ Theo bđt cauchy :
\(\frac{1}{x^2+x}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}\cdot\frac{x}{2}\cdot\frac{x+1}{4}}=\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow\frac{1}{x\left(x+1\right)}=\frac{x}{2}=\frac{x+1}{4}\Leftrightarrow x=1\)
+ Tương tự :
\(\frac{1}{y^2+y}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\) Dấu "=" <=> y = 1
\(\frac{1}{z^2+z}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\) Dấu "=" <=> z = 1
Do đó : \(P+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)
\(\Rightarrow P+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\) \(\Rightarrow P\ge\frac{3}{2}\)
Dấu "=" <=> x = y = z = 1