Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
\(\frac{bc}{a^2+1}=\frac{bc}{a^2+b^2+a^2+c^2}\le\frac{1}{2}\sqrt{\frac{b^2c^2}{\left(a^2+b^2\right)\left(a^2+c^2\right)}}\le\frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)
Tương tự:
\(\frac{ac}{b^2+1}\le\frac{1}{4}\left(\frac{a^2}{a^2+b^2}+\frac{c^2}{b^2+c^2}\right)\) ; \(\frac{ab}{c^2+1}\le\frac{1}{4}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{4}\left(\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+c^2}+\frac{c^2}{a^2+c^2}\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
cái này dễ lắm. thế này nhé. \(a^4\ge0\), b và c cũng thế. suy ra để \(a^4+b^4+c^4=3\)thì a,b,c phải bằng 1 (vì a,b,c nguyên dương hay lớn hơn 0). thế là thay vào rồi suy ra biểu thức kia nhỏ hơn hoặc bằng 1 thôi
mình giải đúng 100%. tích đúng cho mình nhé
Em có cách này nhưng không biết đúng không.Anh check lại ạ,em mới lớp 7 thôi!
Bổ sung đk a,b,c >= 0 (hay a,b,c không âm)
Áp dụng BĐT Cô si (AM-GM),ta có:
\(a^2+\frac{1}{4}\ge2\sqrt{\frac{a^2.1}{4}}=a\)
Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)
Cộng theo vế 3 BĐT trên suy ra \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
Hoặc là dùng BĐT Bunhiacopxki chắc cũng được ạ!
Ta có: \(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)
Suy ra \(a^2+b^2+c^2\ge\frac{\left(\frac{9}{4}\right)}{3}=\frac{9}{12}=\frac{3}{4}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
Bài 1:
Xét A= \(a^2+b^2+c^2-ab-ac-bc\)
\(2A=2a^2+2b^2+2c^2-2ab-2ac-2bc\\ =\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\\ =\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\\ \Rightarrow A\ge0\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Bài 2:
Xét \(A=a^2+b^2+c^2+\frac{3}{4}-a-b-c\)
\(\Rightarrow A=\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)\\ =\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\forall a,b,c\\ \Rightarrow a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
Mk cx đang định hỏi câu này