Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)
Ta dễ có
\(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{1}{2}\left(a+b\right)\)
Sử dụng phép tương tự khi đó:
\(S\le\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
\(\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=3\)
Đẳng thức xảy ra tại a=b=c=1
Áp dụng bđt : \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(1)
CM bđt đúng: Từ (1) => 3xy + 3yz + 3xz \(\le\)x2 + y2 + z2 + 2xy + 2xz + 2yz
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz \(\ge\)0
<=> (x - y)2 + (y - z)2 + (x - z)2 \(\ge\)0 (luôn đúng với mọi x;y;z)
Khi đó: P = \(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy MaxP = 3 khi a = b = c = 1
Ta có đánh giá quen thuộc sau: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*
Áp dụng, ta được: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
Đẳng thức xảy ra khi a = b = c = 1
Áp dụng BĐT Bun-hia-cop-xki ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2\end{cases}\Leftrightarrow a=b=c=\frac{2}{3}}\)
Vậy \(A_{min}=\frac{4}{3}\)khi \(a=b=c=\frac{2}{3}\)
Ta có thể giải bài toán này bằng cách sử dụng phương pháp điều chỉnh biểu thức P để biểu thức này có thể được phân tích thành tổng của các biểu thức có dạng a(x-y)+b(y-z)+c(z-x), trong đó x,y,z là các số thực không âm. Khi đó, ta có:
P = ab + bc - ca = a(b-c) + b(c-a) + c(a-b) = a(-c+b) + b(c-a) + c(-b+a) = a(x-y) + b(y-z) + c(z-x), với x = -c+b, y = c-a và z = -b+a
Do đó, để tìm giá trị lớn nhất của P, ta cần tìm các giá trị lớn nhất của x, y, z. Ta có:
x = -c+b ≤ b, vì c ≥ 0 y = c-a ≤ c ≤ 2022, vì a+b+c = 2022 z = -b+a ≤ a, vì b ≥ 0
Vậy giá trị lớn nhất của P là:
P_max = ab + bc - ca ≤ b(2022-a) + 2022a = 2022b
Tương tự, để tìm giá trị nhỏ nhất của P, ta cần tìm các giá trị nhỏ nhất của x, y, z. Ta có:
x = -c+b ≥ -2022, vì b ≤ 2022 y = c-a ≥ 0, vì c ≤ 2022 và a ≥ 0 z = -b+a ≥ -2022, vì a ≤ 2022
Vậy giá trị nhỏ nhất của P là:
P_min = ab + bc - ca ≥ (-2022)a + 0b + (-2022)c = -2022(a+c)
Do đó, giá trị lớn nhất của P là 2022b và giá trị nhỏ nhất của P là -2022(a+c).
Ta có:
\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\)
\(=6\left(a+b+c\right)=18\)
Suy ra \(P\le3\sqrt{2}\)
Dấu \(=\) xảy ra khi \(a=b=c=1\).