\(a^2+b^2+c^2=1\). CHứng minh:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sqrt{\dfrac{ab+2c^2}{a^2+b^2+ab}}\)\(=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+c^2+c^2\right)}}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}\)\(=\dfrac{ab+2c^2}{a^2+b^2+c^2}\)

\(\Rightarrow\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}\ge ab+2c^2\)

Tương tự: \(\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\)\(\sqrt{\dfrac{ac+2b^2}{1+ac-b^2}}\ge ac+2b^2\)

Cộng vế với vế \(\Rightarrow VT\ge2a^2+2b^2+2c^2+ab+bc+ac=2+ab+bc+ac\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

19 tháng 6 2021

bạn có thể lm rõ hơn ở chỗ tớ khoanh ko ạ ?

undefined

18 tháng 9 2018

\(\sqrt{\dfrac{a+b}{c+ab}}+\sqrt{\dfrac{b+c}{a+bc}}+\sqrt{\dfrac{c+a}{b+ac}}\)

30 tháng 9 2017

Bài này có xuất hiện rồi ,you vào mục tìm kiếm là thấy liền.

Lời giải vắn tắt:

\(A=\sum\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sum\dfrac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(1+ab-c^2\right)}}\ge\sum\dfrac{2\left(ab+2c^2\right)}{1+2ab+c^2}=\sum\dfrac{2\left(ab+2c^2\right)}{\left(a+b\right)^2+2c^2}\ge\sum\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}=\sum\left(ab+2c^2\right)=ab+bc+ca+2\)

( thay \(a^2+b^2+c^2=1\))

14 tháng 11 2017

ta có \(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}.\sqrt{ab+2c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}\sqrt{ab+2c^2}}\)

Áp dụng bất đẳng thức cô si ta có 

\(\sqrt{ab+1-c^2}\sqrt{ab+2c^2}\le\frac{1}{2}\left(ab+1-c^2+ab+2c^2\right)=\frac{1}{2}\left(2ab+1+c^2\right)\) 

=\(\frac{1}{2}\left(2ab+a^2+b^2+2c^2\right)=\frac{1}{2}\left[\left(a+b\right)^2+2c^2\right]\le\frac{1}{2}\left(2a^2+2b^2+2c^2\right)=\left(a^2+b^2+c^2\right)\) =1

=> \(\frac{ab+2c^2}{...}\ge\frac{ab+2c^2}{1}=2c^2+ab\)

tương tự + vào thì e sẽ ra điều phải chứng minh

22 tháng 4 2020

Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM

21 tháng 2 2019

\(VT=\sqrt{\frac{ab+2c^2}{a^2+ab+b^2}}+\sqrt{\frac{bc+2a^2}{b^2+bc+c^2}}+\sqrt{\frac{ca+2b^2}{c^2+ca+a^2}}\)

\(=\frac{ab+2c^2}{\sqrt{\left(a^2+ab+b^2\right)\left(ab+2c^2\right)}}+\frac{bc+2a^2}{\sqrt{\left(b^2+bc+c^2\right)\left(bc+2a^2\right)}}+\frac{ca+2b^2}{\sqrt{\left(c^2+ca+a^2\right)\left(ca+2b^2\right)}}\)

\(\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2c^2+2ab}+\frac{2\left(bc+2a^2\right)}{2a^2+b^2+c^2+2bc}+\frac{2\left(ca+2b^2\right)}{a^2+2b^2+c^2+2ca}\)

\(\ge\frac{ab+2c^2}{a^2+b^2+c^2}+\frac{bc+2a^2}{a^2+b^2+c^2}+\frac{ca+2b^2}{a^2+b^2+c^2}=ab+bc+ca+2\left(a^2+b^2+c^2\right)\)

\(=2+ab+bc+ca=VP\) (Do a2 + b2 + c2 = 1) => ĐPCM.

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{\sqrt{3}}.\)

12 tháng 11 2020

chăc là .............................. điền đi sẽ biếc a you ok ?

3 tháng 6 2020

Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)

\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)

\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)

\(\ge\text{​​}\Sigma\text{​​}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)

\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=2+ab+bc+ca\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

20 tháng 5 2021

Các bạn chuyển \(1c^2\) thành \(2c^2\) cho mk nha

16 tháng 5 2017

Lợi dụng Cauchy-Schwarz' inequality ta có:

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{ab+ac+bc+c^2}}\)

\(=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự ta cũng có:

\(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ca}{\sqrt{ca+2b}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{1}{2}\left(\dfrac{ab+bc}{a+c}+\dfrac{bc+ca}{a+b}+\dfrac{ab+ca}{b+c}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c\left(a+b\right)}{a+b}+\dfrac{a\left(b+c\right)}{b+c}\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\cdot2=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

20 tháng 5 2017

Ta có P=\(\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\dfrac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\dfrac{ac}{\sqrt{ac+\left(a+b+c\right)b}}\)

=\(\dfrac{ab}{\sqrt{ab+ac+bc+c^2}}+\dfrac{bc}{\sqrt{bc+ac+ab+a^2}}+\dfrac{ac}{\sqrt{ac+ab+bc+b^2}}\)

=\(\dfrac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}+\dfrac{bc}{\sqrt{b\left(a+c\right)+a\left(a+c\right)}}+\dfrac{ac}{\sqrt{c\left(a+b\right)+b\left(a+b\right)}}\)

=\(\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\dfrac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\dfrac{ac}{\sqrt{\left(a+b\right)\left(c+b\right)}}\)

áp dụng bđt Cói ta có:

\(\sqrt{\left(a+c\right)\left(b+c\right)}\)\(\le\)\(\dfrac{2+c}{2}=1+\dfrac{c}{2}\)

\(\sqrt{\left(b+á\right)\left(c+a\right)}\)