\(2a^2 +b^2=2a+b\). Tìm giá trị lớn nhất của 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

ta có : \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+\dfrac{b}{c}+\dfrac{a}{b}+\dfrac{ab}{bc}\right)\left(1+\dfrac{c}{a}\right)\)

\(=1+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{bc}{ac}+\dfrac{a}{b}+\dfrac{ac}{ba}+\dfrac{ab}{bc}+1\)

\(=2+\left(\dfrac{c}{a}+\dfrac{ab}{bc}\right)+\left(\dfrac{b}{c}+\dfrac{ac}{ba}\right)+\left(\dfrac{a}{b}+\dfrac{bc}{ac}\right)\ge2+2+2+2=8\) \(\Rightarrowđpcm\)

14 tháng 6 2018

điều kiện : x >-1/2

⇒ 2x + 1 >0 ⇒ \(\dfrac{4}{2x+1}\) >0

ap dụng bất đẳng thức Cauchy ta có:

f(x) ≥ \(2\sqrt{\left(2x+1\right).\dfrac{4}{2x+1}}\) = 4

⇒ Min f(x) = 4. Dấu '' = '' xảy ra khi và chỉ khi

2x + 1 = \(\dfrac{4}{2x+1}\) ⇒ (2x +1 )2 = 4 ⇒ x = \(\dfrac{1}{2}\)

VẬY ĐÁP ÁN LÀ C

NV
3 tháng 5 2020

Câu 3:

Đường tròn tâm \(I\left(1;2\right)\) bán kính \(R=\sqrt{2}\)

Xét đường thẳng d có pt: \(x+y-T=0\)

Để (d) và (C) có điểm chung M

\(\Leftrightarrow d\left(I;d\right)\le R\)

\(\Leftrightarrow\frac{\left|1+2-T\right|}{\sqrt{1^2+1}^2}\le\sqrt{2}\)

\(\Leftrightarrow\left|T-3\right|\le2\Rightarrow T\le5\)

\(\Rightarrow T_{max}=5\) khi (d) tiếp xúc (P)

Giải hệ \(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x+y-5=0\end{matrix}\right.\) ta được \(M\left(2;3\right)\)

NV
3 tháng 5 2020

Câu 1:

Gọi \(C\left(1;0\right)\Rightarrow OC=1;OA=4\)

Với M là điểm bất kì thuộc (C) \(\Rightarrow OM=R=2\)

Xét hai tam giác OCM và OMA có:

\(\widehat{MOC}\) chung

\(\frac{OC}{OM}=\frac{OM}{OA}=\frac{1}{2}\)

\(\Rightarrow\Delta OCM\sim\Delta OMA\Rightarrow\frac{AM}{CM}=\frac{OM}{OC}=2\Rightarrow AM=2CM\)

\(\Rightarrow P=MA+2MB=2CM+2MB=2\left(BM+CM\right)\ge2BC\)

\(\Rightarrow P_{min}=2BC\) khi M;B;C thẳng hàng hay M là giao điểm của đoạn thẳng BC và (C)

\(\overrightarrow{CB}=\left(2;4\right)=2\left(1;2\right)\Rightarrow\) phương trình BC có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=2t\end{matrix}\right.\)

Tọa độ M thỏa mãn:

\(\left(1+t\right)^2+\left(2t\right)^2=4\)

Bạn tự giải nốt (chỉ lấy nghiệm M nằm giữa B và C)

Câu 2: hoàn toàn tương tự câu 1, gọi \(C\left(0;1\right)\Rightarrow\frac{OC}{OM}=\frac{OM}{OA}=\frac{1}{3}\Rightarrow...\)

NV
28 tháng 10 2020

\(AC=\sqrt{AB^2+AD^2}=5\)

a.

\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=5\)

b.

Đặt \(T=\left|2\overrightarrow{AB}+3\overrightarrow{AD}\right|\Rightarrow T^2=4AB^2+9AD^2+12\overrightarrow{AB}.\overrightarrow{AD}=4AB^2+9AD^2\)

\(\Rightarrow T^2=180\Rightarrow T=6\sqrt{5}\)

Vậy \(\left|2\overrightarrow{AB}+3\overrightarrow{AD}\right|=6\sqrt{5}\)

20 tháng 5 2017

Ace Legona Bạn mà ko giải được thì còn ai giải đc nữa mà hỏi

23 tháng 9 2020

1.

Lấy \(x_1;x_2\in\left(-4;0\right)\)

Ta có: \(y_1-y_2=-2x^2_1-7-\left(-2x^2_2-7\right)=-2\left(x_1-x_2\right)\left(x_1+x_2\right)\)

Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)

Do \(x_1;x_2\in\left(-4;0\right)\Rightarrow-8< x_1+x_2< 0\Rightarrow I>0\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(-4;0\right)\)

Lấy \(x_1;x_2\in\left(3;10\right)\)

Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)

Do \(x_1;x_2\in\left(3;10\right)\Rightarrow6< x_1+x_2< 20\Rightarrow I< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(3;10\right)\)

23 tháng 9 2020

2.

Hàm số \(y=mx^2+2x+1\left(P\right)\)

\(A\left(-1;3\right)\in\left(P\right)\Leftrightarrow3=m-2+1\Leftrightarrow m=4\)

Vậy \(m=4\)