Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)
Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)
\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)
Vậy BĐT được cm
Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:
\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Áp dụng BĐT Cô-si:
\(a^2+3\ge2\sqrt{3a^2}=2\sqrt{3}a\)
Tương tự: \(b^2+3\ge2\sqrt{3}b\) ; \(c^2+3\ge2\sqrt{3}c\)
Cộng vế: \(a^2+b^2+c^2+9\ge2\sqrt{3}\left(a+b+c\right)\)
\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+9}{2\sqrt{3}}=\dfrac{9+9}{2\sqrt{3}}=3\sqrt{3}\)
\(\Rightarrow-\left(a+b+c\right)\ge-3\sqrt{3}\)
Tiếp tục áp dụng BĐT Cô-si:
\(\dfrac{a^4}{b+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(b+2\right)\ge2\sqrt{\dfrac{9a^4\left(b+2\right)}{\left(b+2\right)\left(2+\sqrt{3}\right)^2}}=\dfrac{6a^2}{2+\sqrt{3}}\)
Tương tự:
\(\dfrac{b^4}{c+2}+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(c+2\right)\ge\dfrac{6b^2}{2+\sqrt{3}}\)
\(\dfrac{c^4}{a+2}+\dfrac{9}{\left(2+\sqrt{3}\right)}\left(a+2\right)\ge\dfrac{6c^2}{2+\sqrt{3}}\)
Cộng vế:
\(P+\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{6}{2+\sqrt{3}}\left(a^2+b^2+c^2\right)=\dfrac{54}{2+\sqrt{3}}\)
\(\Rightarrow P\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}\left(a+b+c+6\right)\ge\dfrac{54}{2+\sqrt{3}}-\dfrac{9}{\left(2+\sqrt{3}\right)^2}.\left(3\sqrt{3}+6\right)\)
\(\Rightarrow P\ge\dfrac{27}{2+\sqrt{3}}=27\left(2-\sqrt{3}\right)\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
\(Ta có: \frac{{a^5 }}{{b^3 + c^2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }}\mathop \ge \frac{{3a^2 }}{2}\)
\(\Rightarrow \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - (\frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }})\)
\(Do đó: \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - \frac{{\sqrt {2a(b^3 + c^2 )} }}{2}\mathop \ge \frac{{3a^2 }}{2} - \frac{{2a + b^3 + c^2 }}{4}\)
\(CMTT \frac{{b^5 }}{{c^3 + a^2 }}\mathop \ge \frac{{3b^2 }}{2} - \frac{{2b + c^3 + a^2 }}{4}\), \(\frac{{c^5}}{{a^3+b^2}}\mathop \ge \frac{{3c^2 }}{2} - \frac{{2c + a^3 + b^2 }}{4}\)
\(M \ge \frac{{3(a^2 + b^2 + c^2 )}}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)
\(M \ge \frac{9}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)
Áp dụng Bunhiacoopski ta có:
\(\sqrt {(a^4+b^4+c^4 )(a^2+b^2+c^2)}=\sqrt {(a^4 +b^4+ c^4 ).3}\ge a^3+b^3+c^3 \)
\(\sqrt {(a^4 + b^4 + c^4 )(1 + 1 + 1)} = \sqrt {(a^2 + b^2 + c^2 ).3} \ge a^2 + b^2 + c^2 \Leftrightarrow a^4 + b^4 + c^4 \ge 3\)
Ta có: \(3 = a^2 + b^2 + c^2 \ge \frac{{(a + b + c)^2 }}{3} \Leftrightarrow a^2 + b^2 + c^2 \ge a + b + c\)
\(Đặt t=x^4+y^4+z^4 (t \ge 3) cần CM để trở thành S \ge \frac{{4t - 9 - \sqrt {3t} }}{4}\ge 0\)
\(Ta có: S\ge \frac{{4t - 9 - \sqrt {3t} }}{4} = \frac{{3(t - 3) + \sqrt t (\sqrt t - \sqrt 3 )}}{4} \ge 0
\)
\(Do đó: M\geq \frac{9}{2}\)
Phần đầu mình thiếu nha
\(\frac{a^5}{b^3+c^2}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\ge\frac{3a^2}{2}\)
=> \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\left(\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\right)\)
Do đó \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\frac{\sqrt{2a\left(b^3+c^2\right)}}{2}\ge\frac{3a^2}{2}-\frac{\left(2a+b^3+b^2\right)}{4}\)
CMTT \(\frac{b^5}{c^3+a^2}\ge\frac{3b^2}{2}-\frac{\left(2b+c^3+a^2\right)}{4},\frac{c^5}{a^3+b^2}\ge\frac{3c^2}{2}-\frac{\left(2c+a^3+b^2\right)}{4}\)
Dự đoán dấu "=" xảy ra khi \(a=b=c=1\)
Khi đó \(\frac{a^4}{b+2}=\frac{1}{3}\)
Ta cần ghép \(\frac{a^4}{b+2}\)với hạng tử \(k\left(b+2\right)\)thỏa mãn khi Cô-si thì dấu "=" xảy ra khi \(a=b=1\)
Lại có \(b+2=3\)
Đồng thời khi Cô-si dấu "=" xảy ra khi \(\frac{a^4}{b+2}=k\left(b+2\right)\)hay \(\frac{1}{3}=k.3\)\(\Leftrightarrow k=\frac{1}{9}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a^4}{b+2}\)và \(\frac{b+2}{9}\), ta có:
\(\frac{a^4}{b+2}+\text{}\frac{b+2}{9}\ge2\sqrt{\frac{a^4}{b+2}.\frac{b+2}{9}}=\frac{2a^2}{3}\)
Tương tự, ta có \(\frac{b^4}{c+2}+\text{}\frac{c+2}{9}\ge2\sqrt{\frac{b^4}{c+2}.\frac{c+2}{9}}=\frac{2b^2}{3}\)và
\(\frac{c^4}{a+2}+\text{}\frac{a+2}{9}\ge2\sqrt{\frac{c^4}{a+2}.\frac{a+2}{9}}=\frac{2c^2}{3}\)
CỘng vế theo vế từng BĐT, ta được \(P+\frac{a+2+b+2+c+2}{9}\ge\frac{2\left(a^2+b^2+c^2\right)}{3}\)
\(\Leftrightarrow P+\frac{\left(a+b+c\right)+6}{9}\ge2\)(vì \(a^2+b^2+c^2=3\)) \(\Leftrightarrow P\ge2-\frac{\left(a+b+c\right)+6}{9}\)(1)
Ta chứng minh BĐT phụ \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)(với \(a,b,c>0\))
Thật vậy, BĐT này \(\Leftrightarrow\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\le3a^2+3b^2+3c^2\)\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
Vậy BĐT phụ được chứng minh \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{3.3}=3\)(2)
Từ (1) và (2) \(\Rightarrow P\ge2-\frac{3+6}{9}=1\)\(\Rightarrow min_P=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)
Dấu "=" ⇔ a=b=c=3
Áp dụng BĐT Cô-si:
\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\)
Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)
Cộng vế:
\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
\(P=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2-2=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\)
\(=\left(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\right)+\left(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\right)+\left(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\right)-2\)
Áp dụng BĐT AM-GM cho 3 số dương:
\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}.\frac{1}{a}.\frac{1}{a}}=\frac{3}{b}\)
\(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge3\sqrt[3]{\frac{b^2}{c^3}.\frac{1}{b}.\frac{1}{b}}=\frac{3}{c}\)
\(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge3\sqrt[3]{\frac{c^2}{a^3}.\frac{1}{c}.\frac{1}{c}}=\frac{3}{a}\)
\(\Rightarrow P\ge\frac{3}{b}+\frac{3}{c}+\frac{3}{a}-2=3-2=1\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\) thì
\(\Rightarrow\hept{\begin{cases}x+y+z=1\\P=\frac{y^3}{x^2}+\frac{z^3}{y^2}+\frac{x^3}{z^2}\end{cases}}\)
Ta có:
\(\frac{x^3}{z^2}+z+z\ge3x,\frac{y^3}{x^2}+x+x\ge3y,\frac{z^3}{y^2}+y+y\ge3z\)
\(\Rightarrow\frac{x^3}{z^2}\ge3x-2z,\frac{y^3}{x^2}\ge3y-2x,\frac{z^3}{y^2}\ge3z-2y\)
\(\Rightarrow P\ge3x-2z+3y-2x+3z-2y=x+y+z=1\)
\(\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)\ge\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)^2\)
\(\Rightarrow\sqrt{a^2+\dfrac{1}{b+c}}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)=\dfrac{1}{\sqrt{17}}\left(4a+\dfrac{1}{\sqrt{b+c}}\right)\)
Tương tự:
\(\sqrt{b^2+\dfrac{1}{a+c}}\ge\dfrac{1}{\sqrt{17}}\left(4b+\dfrac{1}{\sqrt{a+c}}\right)\) ; \(\sqrt{c^2+\dfrac{1}{a+b}}\ge\dfrac{1}{\sqrt{17}}\left(4c+\dfrac{1}{\sqrt{a+b}}\right)\)
Cộng vế:
\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)
Cũng theo Bunhiacopxki:
\(1.\sqrt{a+b}+1.\sqrt{b+c}+1\sqrt{c+a}\le\sqrt{\left(1+1+1\right)\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Kiểm tra lại mẫu số của 3 phân thức
Mẫu số của \(b+1\ne c+2,a+2.\)
Xem lại đề bạn