Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)
Bạn có thể tham khảo cách này
Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{2}{b}=y\\\frac{3}{c}=z\end{cases}}\Rightarrow x+y+z=3\)
BĐT thành \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\left(1\right)\)
ta sẽ dùng Bđt Cói \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)
Tương tự rồi cộng lại
\(\left(1\right)\ge x+y+z-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)
Dấu = khi \(x=y=z=1\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{2}{b}\\z=\frac{3}{c}\end{cases}\Rightarrow}\hept{\begin{cases}x,y,z>0\\x+y+z=3\end{cases}}\)
Khi đó ta có BĐT cần chứng minh tương đương với:
\(P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Ta có: \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+xy^2+yz^2+zx^2}\)
Ta cũng có: \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)\left(x^2+y^2+z^2\right)\)
\(=x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x\)
\(\ge3\left(x^2y+y^2z+z^2x\right)\)
\(\Rightarrow x^2y+y^2z+z^2x\le x^2+y^2+z^2\)
Chứng minh tương tự ta có: \(xy^2+yz^2+zx^2\le x^2+y^2+z^2\)
\(\Rightarrow P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3}{2}\)
Dấu = khi \(x=y=z\)hay\(\hept{\begin{cases}a=1\\b=2\\b=3\end{cases}}\)
Áp dụng Holder:
\(24VT=\left(1+1+1+1+1+1\right)\left(a^3+a^3+c^3+c^3+b^3+b^3\right)\left(\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{a^3}+\frac{1}{c^3}\right)\ge\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^3\)
Mà \(\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^2\ge36\)( AM-GM)
\(24VT\ge36\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\Leftrightarrow VT\ge VF\)
Dấu = xảy ra khi a=b=c .
P/s: BĐT holder: \(\left(a_1^n+a^n_2+...a_3^n\right)\left(b_1^n+b_2^n+...b_n^n\right)...\left(z_1^n+z_2^n+...z_n^n\right)\ge\left(a_1.b_1..z_1+a_2.b_2..z_2+...+a_n.b_n.z_n\right)^n\)
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Akai Haruma em có cách khác:3 Cô check giúp em ạ.
Sử dụng nguyên lí Dirichlet ta có thể giả sử \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Rightarrow a^2b^2\ge a^2+b^2-1\)
Suy ra \(a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
Suy ra \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge\left[\left(2a\right)^2+\left(2b\right)^2+2^2+2^2\right]\left(1+1+1+c^2\right)\)
\(\ge\left(2a+2b+2c+2\right)^2=4\left(a+b+c+1\right)^2\) (Bunyakovski)
Đẳng thức xảy ra khi a = b = c = 1
Ngắn quá:))
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq (a+b+c+1)^2\)
\(\Leftrightarrow 4(a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq 4(a+b+c+1)^2\)
Để chứng minh được BĐT đã cho, ta chỉ cần chỉ ra:
\((b^2+3)(c^2+3)\geq 4[1+\frac{(b+c+1)^2}{3}]\)
\(\Leftrightarrow 3b^2c^2+5b^2+5c^2+11-8bc-8b-8c\geq 0\)
\(\Leftrightarrow 3(bc-1)^2+4(b-1)^2+4(c-1)^2+(b-c)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Ta có:
a2(b + c) = b2(a + c)
<=> a2 b - b2 a + a2 c - b2 c = 0
<=> (a - b)(ab + bc + ca) = 0
<=> ab + bc + ca = 0 (vì a,b,c khác nhau từng đôi 1)
\(\Rightarrow\hept{\begin{cases}a\left(b+c\right)+bc=0\\c\left(a+b\right)+ab=0\end{cases}}\)
Ta lại có: a2(b + c) = 2016
<=> a(-bc) = 2016
<=> - abc = 2016
Ta xét
P = c2(a + b) = c(-ab) = - abc = 2016
Không thấy ai tham gia nhỉ: Thảo luận cho vui nào?
\(\hept{\begin{cases}a^2\left(b+c\right)=2016\\b^2\left(a+c\right)=2016\\c^2\left(a+b\right)=2016\end{cases}\Rightarrow}\)có nghiệm không?