Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow\hept{\begin{cases}a+b-2c=a-b\\b+c-2a=b-c\\c+a-2b=c-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2b-2c=0\\2c-2a=0\\2a-2b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b-c=0\\c-a=0\\a-b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=c\\c=a\\a=b\end{cases}}\)
\(\Leftrightarrow a=b=c\)( đpcm )
\(\Rightarrow\hept{\begin{cases}a+b-2c=a-b\\b+c-2a=b-c\\c+a-2b=a-c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2b-2c=0\\2c-2a=0\\2a-2b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}b-c=0\\c-a=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}b=c\\c=a\\a=b\end{cases}\Rightarrow}a=b=c\left(dpcm\right)}\)
\(\hept{\begin{cases}a\left(a+b+c\right)=-12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{cases}}\)
Cộng cả 3 phương trình với nhau vế theo vế được
\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=36\)
\(\Leftrightarrow\left(a+b+c\right)^2=36\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b+c\right)=6\\\left(a+b+c\right)=-6\end{cases}}\)
Với \(\left(a+b+c\right)=6\)thì
\(\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}\)
Với \(\left(a+b+c\right)=-6\)thì
\(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)
Ta có:\(\left|a\right|,\left|b\right|\) \(\leq\) \(1\)
\(\implies\) \(\left(1-a\right).\left(1-b\right)\) \(\geq\) \(0\)
\(\implies\) \(1-b-a+ab\)\(\geq\) \(0\)
\(\implies\) \(1+ab\) \(\geq\) \(a+b\)
\(\implies\) \(\left|1+ab\right|\) \(\geq\) \(\left|a+b\right|\) \(\left(đpcm\right)\)
Áp dụng thủ thuật 1-2-3 và tính chất a + b = a . b , ta có :
1 + 1 = 1 . 1 ( loại ) , 2 + 2 = 2 . 2 ( giữ ) , 3 + 3 = 3 . 3 ( loại )
Vậy với \(a,b,c\ne0;\frac{ab}{a+b}=\frac{bc}{b+c}+\frac{ac}{a+c}\) , => Đẳng thức xảy ra khi x + y = x . y tức là a = b = c = 2 .
\(\left(1+\frac{a}{2b}\right)\left(1+\frac{b}{3c}\right)\left(1+\frac{c}{4a}\right)\)
\(\Rightarrow\left(1+\frac{1}{2\cdot1}\right)\left(1+\frac{1}{3\cdot1}\right)\left(1+\frac{1}{4\cdot1}\right)\)
\(=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\)
\(=\frac{5}{2}\)( vì \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}=\frac{3\cdot4\cdot5}{2\cdot3\cdot4}=\frac{5}{2}\))