Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:
\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)
\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
a) BĐT cần cm tương đương ;
\(a-\dfrac{ab^2}{1+b^2}+b-\dfrac{bc^2}{1+c^2}+a-\dfrac{a^2c}{1+a^2}\ge\dfrac{3}{2}\)
\(\Leftrightarrow3-\left(\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\left(\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\right)\le\dfrac{3}{2}\)
Áp dụng BĐT Cauchy
\(\Rightarrow\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)
tương tự rồi cộng vế theo vế các BĐT lại
\(\Leftrightarrow\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\le\dfrac{ab+bc+ac}{2}\)
mặt khác \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\le\dfrac{3}{2}\)
ĐPCM
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\((a+b+1)(a+b+c^2)\geq (a+b+c)^2\Rightarrow a+b+1\geq \frac{(a+b+c)^2}{a+b+c^2}\)
\(\Rightarrow \frac{1}{a+b+1}\leq \frac{a+b+c^2}{(a+b+c)^2}\)
Tương tự cho các phân thức còn lại, suy ra:
\(1\leq \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}\leq \frac{a+b+c^2}{(a+b+c)^2}+\frac{b+c+a^2}{(a+b+c)^2}+\frac{c+a+b^2}{(a+b+c)^2}\)
\(\Leftrightarrow 1\leq \frac{2(a+b+c)+a^2+b^2+c^2}{(a+b+c)^2}\)
\(\Leftrightarrow (a+b+c)^2\leq 2(a+b+c)+a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ac\leq a+b+c\) (đpcm)
Dấu bằng xảy ra khi $a=b=c=1$
Bài 1:
Ta có:
\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)
\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)
\(=3-2M(*)\)
Áp dụng BĐT Cauchy ta có:
\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)
\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)
Tiếp tục áp dụng BĐT Cauchy:
\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)
Mà \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)
\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)
Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)
(đpcm)
Dấu bằng xảy ra khi $a=b=c=1$
Bài 2:
Áp dụng BĐT Cauchy -Schwarz:
\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)
hay:
\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)
Mặt khác, theo BĐT Cauchy ta dễ thấy:
\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)
\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)
\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)
Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT cauchy-schwarz:
\(VT=\sum\dfrac{a^4}{b^3\left(c+2a\right)}=\sum\dfrac{\dfrac{a^4}{b^2}}{b\left(c+2a\right)}\ge\dfrac{\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)
Mà \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu = xảy ra khi a=b=c
Lời giải:
Ta có:
\(\text{VT}=1-\frac{2ab^2}{2ab^2+1}+1-\frac{2bc^2}{2bc^2+1}+1-\frac{2ca^2}{2ca^2+1}\)
\(\text{VT}=3-\underbrace{\left( \frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)}_{N}\) (1)
Áp dụng BĐT Am-Gm:
\(2ab^2+1=ab^2+ab^2+1\geq 3\sqrt[3]{a^2b^4}\)
\(\Rightarrow \frac{2ab^2}{2ab^2+1}\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}=\frac{2}{3}\sqrt[3]{ab^2}\)
Tương tự với các phân thức còn lại và cộng theo vế, suy ra :
\(N\leq \frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)
Áp dụng BĐT AM-GM:
\(\sqrt[3]{ab^2}\leq \frac{a+b+b}{3}\); \(\sqrt[3]{bc^2}\leq \frac{b+c+c}{3}; \sqrt[3]{ca^2}\leq \frac{c+a+a}{3}\)
\(\Rightarrow N\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)\)
\(\Leftrightarrow N\leq \frac{2}{3}(a+b+c)=2\) (2)
Từ \((1),(2)\Rightarrow \text{VT}\geq 1\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Áp dụng BĐT B.C.S ta có :
\(\dfrac{1}{2ab^2+1}+\dfrac{1}{2bc^2+1}+\dfrac{1}{2ca^2+1}\ge\dfrac{9}{2ab^2+2bc^2+2ca^2+3}\)
Ta phải chứng minh \(\dfrac{9}{2ab^2+2bc^2+2ca^2+3}\ge1\)
\(\Leftrightarrow2ab^2+2bc^2+2ac^2+3\le9\) do a,b,c dương nên chia cả hai vế cho abc ta được: \(2\left(a+b+c\right)+\dfrac{3}{abc}\le\dfrac{9}{abc}\)
\(\Leftrightarrow6\le\dfrac{6}{abc}\Leftrightarrow abc\le1\) Bất đẳng thức cuối luôn đúng thật vậy:
áp dụng BĐT AM - GM :
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)
\(\Rightarrowđpcm\)
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)
\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)
Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)
\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)
\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)
\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)