Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Em tham khảo cách làm tại link: Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu b tại đây nhé.
Chú ý rằng, với đa thức \(a^3+b^3+c^3-3abc\) thì ta có thể phân tích đa thức trên thành một nhân tử bằng cách dùng hằng đẳng thức, khi đó:
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-ab+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
Nhận xét: Nếu \(a^3+b^3+c^3=3abc\) thì \(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\) \(\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\) \(^{a+b+c=0}_{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\) \(\Leftrightarrow\) \(^{a+b+c=0}_{a=b=c}\)
\(------------------\)
Vì \(abc=16\) (theo giả thiết) nên \(a,\) \(b,\) \(c\ne0\) và \(3abc=48\) \(\left(1\right)\)
Ta có: \(a^3+b^3+c^3=48\) \(\left(2\right)\)
Do đó, từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(a^3+b^3+c^3=3abc\) \(\left(=48\right)\)
\(\Leftrightarrow\) \(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\) \(\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\) \(\left(\text{*}\right)\) (theo nhận xét trên)
Mà \(a+b+c\ne0\) nên từ \(\left(\text{*}\right)\) suy ra \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\), tức \(a=b=c\) \(\left(\text{**}\right)\)
Mặt khác, ta cũng có \(abc=16\) và do \(\left(\text{**}\right)\) nên \(a^3=16\)
Khi đó, biểu thức \(P\) sẽ trở thành:
\(P=\frac{\left(a+b\right)}{ab}.\frac{\left(b+c\right)}{bc}.\frac{\left(c+a\right)}{ca}=\frac{2a}{a^2}.\frac{2a}{a^2}.\frac{2a}{a^2}=\frac{8a^3}{a^6}=\frac{8}{a^3}=\frac{8}{16}=\frac{1}{2}\) (do \(a\ne0\))
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?
1.a) A là số tự nhiên khi và chỉ khi 4x\(⋮\)x-2 =>x-2 là ước của 4 và x-2 \(\ge\)1=>x={3;4;6}
b) |A| > A khi và chỉ khi A âm=> x<2
2.b2c+2014 hay b2c+2017 bạn
Ta có:
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)\ge0\)
\(\Rightarrow ab+ac+bc\le\dfrac{2.3}{2}=3\) (1)
Lại có: \(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)
\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+3}{2}=3\) (2)
Cộng vế với vế của (1) và (2) ta được:
\(a+b+c+ab+ac+bc\le6\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
\(\Rightarrow A=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2017}}=\dfrac{3}{3}=1\)