Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M=a+b+c nhỏ nhất thì a,b,c phải nhỏ nhất
mà a\(\ge\)5 , b\(\ge\)6 , c\(\ge\)7
và a\(^2\)+b\(^2\)+c\(^2\)=125
\(\Rightarrow\)a,b,c lần lượt là 5 ,6,8 (tmđk)
GTNN của M là 19
Lời giải:
Do $a\geq 4, b\geq 5, c\geq 6$
$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$
$\Rightarrow c\leq 7$
$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$
$\Rightarrow a< 9$
$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$
$\Rightarrow b< 8$
Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$
Suy ra:
$(a-4)(a-9)\leq 0$
$(b-5)(b-8)\leq 0$
$(c-6)(c-7)\leq 0$
$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$
$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$
$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$
Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$
Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 )
Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Vậy maxP = 1/81 <=> a = b = c = 1/3