K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

Em thử nha, có gì sai bỏ qua ạ.

Đề cho gọn,Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì \(xy+yz+zx=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=0\) 

Và \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=0\)

Ta có: \(VT=\sqrt{x^2+y^2+z^2}=\sqrt{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}=0\) (1)

Mặt khác,ta có \(VT=\left|x+y+z\right|=0\) (2)

Từ (1) và (2) ta có đpcm

  • tth_new

​Dòng cuối phải là

VP=|x+y+z|=0 

đúng không????

20 tháng 7 2016

Xét : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{2}{abc}.\left(a+b+c\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(Vì a + b + c = 0)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) (đpcm)

6 tháng 8 2019

BĐT \(\Leftrightarrow6\left(a^3+b^3+c^3\right)+\left(a+b+c\right)^3\ge5\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (do a + b + c = 1)

\(\Leftrightarrow2\left[a^3+b^3+c^3+3abc-\left(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right)\right]\ge0\)

Luôn đúng theo bđt Schur bậc 3 nên ta có đpcm.

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left\{\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right);\left(\frac{1}{2};\frac{1}{2};0\right);\left(\frac{1}{2};0;\frac{1}{2}\right);\left(0;\frac{1}{2};\frac{1}{2}\right)\right\}\)

Cách này mà sai thì em chịu luôn!

25 tháng 11 2019

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow xyz=1\)

Không khó để chứng minh \(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z\)

\(VT=\Sigma\frac{y^2z}{x^2\left(1+2z\right)}=\Sigma\frac{\left(\frac{y^2}{x^2}\right)}{\frac{1+2z}{z}}\ge\frac{\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+6}\)

\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+6}\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+6}\)

Đặt \(t=x+y+z\ge3\sqrt[3]{xyz}=3\).Cần chứng minh:

\(f\left(t\right)=\frac{t^2}{\frac{t^2}{3}+6}\ge1\Leftrightarrow\frac{2}{3}\left(t-3\right)\left(t+3\right)\ge0\)(đúng)

IS that true?

25 tháng 11 2019

Làm xong em mới nhận ra không cần đổi biến:D

Ta có:

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=3\sqrt[3]{\frac{a^3}{abc}}=3a\)

Tương tự: \(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3b;\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3c\)

Cộng theo vế 3 BĐT trên suy ra \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)

Trở lại bài toán: \(VT=\Sigma_{cyc}\frac{\left(\frac{a^2}{b^2}\right)}{c+2}\ge\frac{\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}=\frac{t^2}{t+6}\)(với \(t=a+b+c\ge3\sqrt[3]{abc}=3\))

Cần chúng minh: \(\frac{t^2}{t+6}\ge1\Leftrightarrow t^2-t-6\ge0\Leftrightarrow\left(t-3\right)\left(t+2\right)\ge0\)(đúng)

29 tháng 9 2016

Ta có :

\(a^2+b^2+c^2-2bc-2ca+2ab\)

\(=\left(a+b-c\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2-2bc-2ca+2ab\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge2bc+2ca-2ab\)

Dấu bằng xảy ra khi \(a+b=c\)

Mà \(\frac{5}{3}< \frac{6}{3}=2\)

\(\Rightarrow a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab\le a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab< 2\)

Do a ,b , c > 0

\(\Rightarrow\frac{2bc+2ac-2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{2bc}{2abc}+\frac{2ac}{2abc}-\frac{2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy ...

29 tháng 9 2016

Ta có:\(\left(a+b-c\right)^2\ge0\)(với a,b,c > 0)

<=> \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

<=> \(bc+ac-ab\le\frac{a^2+b^2+c^2}{2}=\frac{5}{6}< 1\)

Chia 2 vế của bđt cho abc >0 ta dc

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

5 tháng 8 2020

Bài làm:

Ta có: \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)

\(=\frac{3}{b+c}+\frac{a^2}{b+c}+\frac{3}{c+a}+\frac{b^2}{c+a}+\frac{3}{a+b}+\frac{c^2}{a+b}\)

\(=3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)

Áp dụng bất đẳng thức Cauchy Schwars ta được:

\(VT\ge3.\frac{\left(1+1+1\right)^2}{a+b+b+c+c+a}+\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)

\(=3.\frac{9}{2\left(a+b+c\right)}+\frac{3^2}{2\left(a+b+c\right)}\)

\(=3.\frac{9}{2.3}+\frac{9}{2.3}=\frac{9}{2}+\frac{9}{6}=6\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

5 tháng 12 2018

Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)

                             LG

Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)

                                 \(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)

                                 \(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)

Khi đó :\(B=a+b+c+\frac{1}{abc}\)

   \(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)

\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)

 \(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy .........

4 tháng 12 2018

2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)

\(A\ge a+b+c-\frac{6}{2}\)

\(A\ge6-3\)

\(A\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)

                                 \(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)

                                 \(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)

Lấy \(\left(1\right)-\left(3\right)\)ta có:

\(2a-2c=c+b-a-b=c-a\)

\(\Rightarrow2a-2c-c+a=0\)

\(\Leftrightarrow3.\left(a-c\right)=0\)

\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)

Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)

\(\Rightarrow a=b=c=2\)

Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)

28 tháng 8 2020

Ta có :  \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=6\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)=6.\left(a+b+c\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\cdot\left(a+b\right)}{c}+\frac{\left(a+b+c\right)\cdot\left(b+c\right)}{a}+\frac{\left(a+b+c\right)\cdot\left(c+a\right)}{b}=24\) ( Do \(a+b+c=4\) )

\(\Leftrightarrow\frac{\left(a+b\right)^2+c.\left(a+b\right)}{c}+\frac{\left(b+c\right)^2+a.\left(b+c\right)}{a}+\frac{\left(c+a\right)^2+b.\left(c+a\right)}{b}=24\)

\(\Leftrightarrow\left[\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\right]+2\left(a+b+c\right)=24\)

\(\Leftrightarrow\left[\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\right]+2.4=24\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}=16\) ( đpcm )

20 tháng 3 2020

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Xét 2 trường hợp :

+) TH : \(\frac{a^2+16bc}{b^2+c^2}\ge\frac{a^2}{b^2}\)

Dễ thấy \(\frac{b^2+16ac}{c^2+a^2}\ge\frac{b^2}{a^2}\)\(\frac{c^2+16ab}{a^2+b^2}\ge\frac{16ab}{a^2+b^2}\)

Cần chứng minh : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{16ab}{a^2+b^2}\ge10\)

\(\Leftrightarrow\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\right)+\frac{16}{\frac{a^2+b^2}{ab}}\ge12\)\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+\frac{16}{\frac{a}{b}+\frac{b}{a}}\ge12\)

Đặt \(\frac{a}{b}+\frac{b}{a}=t\)( t \(\ge\)2 )

BĐT trở thành : \(t^2+\frac{16}{t}\ge12\Leftrightarrow t^2+\frac{8}{t}+\frac{8}{t}\ge12\)

Ta có : \(t^2+\frac{8}{t}+\frac{8}{t}\ge3\sqrt[3]{t^2.\frac{8}{t}.\frac{8}{t}}=12\)

+) TH \(\frac{a^2+16bc}{b^2+c^2}< \frac{a^2}{b^2}\Leftrightarrow b^2\left(a^2+16bc\right)< a^2\left(b^2+c^2\right)\)

\(\Leftrightarrow16b^3c< a^2c^2\Leftrightarrow16b^3< a^2c\)

Do \(b\ge c\)nên \(16b^3< a^2c\le a^2b\Rightarrow a^2>16b^2\)

\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}=16+\frac{\left(a^2-16b^2\right)+16c\left(b-c\right)}{b^2+c^2}>16\)

\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}+\frac{b^2+16ac}{c^2+a^2}+\frac{c^2+16ab}{a^2+b^2}>\frac{a^2+16bc}{b^2+c^2}>16>10\)

Bài toán được chứng minh . Dấu "=" xảy ra khi a = b , c = 0 và các hoán vị

P/s : bài này ở trong sách gì mà mk quên rồi

4 tháng 3 2024

Mình thấy trong sách "Bất đẳng thức cực trị 8 9" của Võ Quốc Bá Cẩn đấy