K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Sửa đề trong bài làm luôn nhé

\(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)

\(\Rightarrow\frac{a+2b-c}{x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}\)

\(\Rightarrow\frac{a+2b-c}{x}=\frac{2\left(2a+b+c\right)}{2y}=\frac{4b+c-4a}{z}=\frac{9a}{x+2y-z}\left(1\right)\)

\(\Rightarrow\frac{2\left(a+2b-c\right)}{2x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}=\frac{9b}{2x+y+z}\left(2\right)\)

\(\Rightarrow\frac{-4\left(a+2b-c\right)}{-4x}=\frac{4\left(2a+b+c\right)}{4y}=\frac{4b+c-4a}{z}=\frac{9c}{-4x+4y+z}\left(3\right)\)

Từ (1), (2), (3) ta có ĐPCM

6 tháng 4 2018

Ta có \(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)

\(\Rightarrow\frac{x}{a+2b-c}=\frac{2y}{4a+2b+c}=\frac{z}{4b+c-4a}=\frac{x+2y-z}{9a}\left(1\right)\)

\(\Rightarrow\frac{2x}{2a+4b-2c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}=\frac{2x+y+z}{9b}\left(2\right)\)

\(\Rightarrow\frac{4x}{4a+8b-4c}=\frac{4y}{8a+4b+4c}=\frac{z}{4b+c-4a}=\frac{4y+z-4a}{9c}\left(3\right)\)

Từi (1),(2),(3) 

còn j giải típ nha

@@@@@@@@@@@@

27 tháng 11 2019

Bạn xem lời giải  Tại đây  nhé !

11 tháng 3 2017

Đặt \(\frac{x}{a+2b+c}\)=\(\frac{y}{2a+b-c}\)=\(\frac{z}{4a-4b+c}\)=k

=>x=ak+2bk+ck; y=2ak+bk-ck; z=4ak-4bk+ck

=> \(\frac{a}{x+2y+c}\)=\(\frac{a}{ak+2bk+ck+4bk+2bk-2ck+4ak-4bk+ck}\)=\(\frac{a}{9ak}\)=\(\frac{1}{9k}\)

Tương tự => \(\frac{a}{x+2y+c}\)=\(\frac{b}{2x+y-z}\)=\(\frac{c}{4x-4y+z}\)=\(\frac{1}{9k}\)

16 tháng 12 2017

Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=A\)

Áp dụng TC DTSBN ta có :

\(A=\frac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}\)

\(=\frac{x+2y+z}{9a}=\frac{1}{9}.\frac{x+2y+z}{a}\) (1)

\(A=\frac{2x+y+z}{2\left(a+2b+c\right)+2a+b-c+4a-4b+c}=\frac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}\)

\(=\frac{2x+y-z}{9b}=\frac{1}{9}.\frac{2x+y-z}{b}\) (2)

\(A=\frac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)+4a-4b+c}=\frac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\)

\(=\frac{4x-4y+z}{9c}=\frac{1}{9}.\frac{4x-4y+z}{c}\)(3)

Từ (1);(2);(3) \(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y+z}=\frac{c}{4x-4y+z}\) (đpcm)

25 tháng 9 2017

Bài 1:

Ta có: \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}=\frac{a^2+2.2012.ab+2012^2.b^2}{b^2+2.2012.bc+2012^2.c^2}=\frac{a^2+2.2012.ab+2012^2.ac}{ac+2.2012.bc+2012^2.c^2}=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)

Vậy...

Bài 2:

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)

\(\Rightarrow\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}=\frac{a}{x+2y+z}\)(1)

\(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}=\frac{b}{2x+y-z}\) (2)

\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{4a+8b+c-8a-4b+c+4a-4b+c}{4x-4y+z}=\frac{c}{4x-4y+z}\) (3)

Từ (1),(2),(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)

25 tháng 9 2017

bạn trên nhầm -4b thành +4b ở bài 2 ở phần (1) nha bạn, nhưng mình cũng cảm ơn

6 tháng 11 2017

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{x}{4a-4b+6}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y+z}\)

Giải:

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{9a}\left(1\right)\)

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{9b}\left(2\right)\)

\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{9c}\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)hay

\(\dfrac{a}{x+2y+z}=\dfrac{b}{2z+y-z}=\dfrac{c}{4x-4y+z}\) cùng = 9

29 tháng 11 2017

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\)( 1 )

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\)( 2 )
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{9c}\)( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) 

\(\frac{x+2y-z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)hay \(\frac{9a}{x+2y-z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)

\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)