K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2022

\(S-P=a_1^3-a_1+a_2^3-a_2+...+a_n^3-a_n\)

\(=a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+...+a_n\left(a_n-1\right)\left(a_n+1\right)\)

Do \(a_k\left(a_k-1\right)\left(a_k+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6

\(\Rightarrow S-P⋮6\)

Mà \(P⋮6\Rightarrow S⋮6\)

9 tháng 4 2022

Cái đầu tiên là \(\sqrt[n]{\frac{a_1^n+a_2^n+a_3^n+...+a_n^n}{n}}\)nhé.

9 tháng 3 2017

Ta có: \(1995^{1995}=a_1+a_2+...+a_n\)

\(\Rightarrow a_1+a_2+...+a_n\)là số lẻ

\(\Rightarrow a_1^3+a_2^3+...+a_n^3\) là số lẻ (1)

Ta lại có: 

\(\left(1995^{1995}\right)^3=\left(a_1+a_2+...+a_n\right)3\)

\(\Leftrightarrow1995^{5985}=a_1^3+a_2^3+...+a_n^3+3A\)(2)

Từ (1) và (2) \(\Rightarrow3A\)là số chẵn hay \(3A⋮6\)

Vậy số dư của \(a_1^3+a_2^3+...+a_n^3\)chia cho 6 sẽ đúng bằng số dư của \(1995^{5985}\)chia cho 6

Ta có: \(1995\text{≡}3\left(mod6\right)\Rightarrow1995^{5985}\text{≡}3^{5985}\left(mod6\right)\)(3)

Mà ta có: \(3^{5985}-3=3\left(3^{5984}-1\right)=3.2.B=6.B\) (B chỉ là ký hiệu phần còn lại. Ký hiệu cho gọn)

Từ đây thì ta có: \(3^{5985}\text{≡}3\left(mod6\right)\)(4)

Từ (3) và (4) \(\Rightarrow1995^{5985}\text{≡}3^{5985}\text{≡}3\left(mod6\right)\)

Vậy \(a_1^3+a_2^3+...+a_n^3\) chia cho 6 dư 3

9 tháng 3 2017

khó quá

26 tháng 5 2017

cái này là bổ đề tui c/m rùi mà =="

CM :\(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)

Áp dụng BĐT Cô si cho 2 số \(a_1\) và 1 :

\(a_1+1\ge2\sqrt{a_1}\ge0\)

Tương tự cũng có :

\(a_2+1\ge2\sqrt{a_2}\ge0\)

........

\(a_n+1\ge2\sqrt{a_n}\ge0\)

=> \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\sqrt{a_1.a_2...a_n}=2^n\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a_1=a_2=...=a_n=1\)

2 tháng 10 2019

Mik sửa lại đề thành \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)

31 tháng 10 2019

\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)

\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)