Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu a2+b2+c2+m2+n2+p2 - (a+b+c+m+n+p)
=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) \(⋮\)2
mà a2+b2+c2+m2+n2+p2\(\ge\)6 ( vì a,b,c,m,np nguyên dương)
=> a+b+c+m+n+p là hợp số
Xét hiệu a2+b2+c2+m2+n2+p2 - (a+b+c+m+n+p)
=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) ⋮ 2
mà a2+b2+c2+m2+n2+p2 ≥ 6 ( vì a,b,c,m,np nguyên dương)
=> a+b+c+m+n+p là hợp số
Giả sử m;n;p không có số nào chia hết cho 3
=> m ; n;p có dạng 3k +1 hoặ 3k + 2 (k thuộc N)
=> m^2;n^2;p^2 có dạng 3x + 1(X thuộc N)
=> n^2 + p^2 cia 3 dư 2
Mà m^2 chia 3 dư 1
=> m^2 khác n^2 + p^2 ( trái vói giả thiết )
Vậy m;n;p có ít nhất1 số chia hết cho 3
=>m*n*p chia hết cho 3 (1)
Chứng minh tương tự :
m*n*p chia hếu cho 5 (2)
Từ (1) và (2) và (3;5)=1
=>m*n*p chia heetscho 3*5 =15
Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath
Xét : \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có: \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2