K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

Áp dụng t/c của dãy tỉ số = nhau ta có:

a/a+2b = b/b+2c = c/c+2a = (a+b+c)/(a+2b)+(b+2c)+(c+2a) = (a+b+c)/3(a+b+c) = 1/3

a/a+2b = 1/3 <=> 3a = a+2b

<=> 2a = 2b <=> a = b

Tương tự ta cũng có: b = c

Như vậy a = b = c

=> a + b + c = 3a chia hết cho 3 (đpcm)

1 tháng 2 2017

cảm ơn bn

6 tháng 4 2017

ap dung tinh chat ti le thuc ta co a/a+2b=b/b+2c+=c/c+2a=a+b+c/a+2b+b+2c+c+2a=1/3

do đóa/a+2b=b/b+2c=c/c+2a=1/3

hay a chia 3 = a+2b

       b chia 3 =b+2c

        c chia 3 =c+2a

ma a,b,c la cac so nguyen duong nen a,b,c chia het cho 3

nen a+b+c chia het 3

29 tháng 6 2020

Bài làm:

Ta có: \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)

Xét: \(\frac{a}{a+2b}=\frac{1}{3}\Leftrightarrow3a=a+2b\Leftrightarrow2a=2b\Rightarrow a=b\)

Tương tự xét các phân thức còn lại ta chứng minh được: \(a=b=c\)

Thay \(\hept{\begin{cases}b=a\\c=a\end{cases}}\)ta được \(a+b+c=3a⋮3\)

\(\Rightarrow a+b+c⋮3\)

23 tháng 1 2019

Câu hỏi của Trần Anh Đại  nếu ko vào được ib vs tui  để biết thêm chi tiết!

12 tháng 3 2019

Câu hỏi của Trần Anh Đại:bạn tham khảo tại đây!

1 tháng 9 2019

xin lỗi các bạn . Mình nhầm đề . Các bạn ko cần trả lời câu hỏi này đâu 

1 tháng 9 2019

Mình xin lỗi . Đây đúng là đề bài thật . Các bạn làm giúp mình với nha !! Thành thật xin lỗi

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)