Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a=-\frac{b}{28}\). Mà b là số nguyên âm => a là số dương
Và : \(c=\frac{d}{35}\). Mà d là số nguyên âm => c là số âm
=> a > c
Câu 1- C
Câu 2- B
Câu 3- B
Câu 4- C
Câu 5- A
Câu 6- Câu này mình thấy B là sai chắc rồi nhưng lại thấy A cũng vô lý nữa nên bạn xem lại đề nha
Câu 7- A
Câu 8- lâu ko học nên mình quên rồi
Câu 9- B
Câu 10- C
Câu 11- B
Câu 12- A
Học tốt nha bạn ~~~~ ỌvỌ
Hai số đói nhau có tổng bằng 0
x+y=-a+b-c-d+c-b+d+a=0
Vậy x và y là 2 số đối nhau
a) (a-b+c)-(d+c-b)
= a - b + c - d - c + b
= a - d
b) -35 chia hết cho n-8
=> n - 8 thuộc Ư(-35)
=> n - 8 thuộc {-1; 1; -5; 5; -7; 7; - 35; 35}
=> n thuộc {7; 9; 3; 13; 1; 15; -27; 43}
c) a và b là 2 số nguyên khác nhau
=> a - b và b - a khác 0
a - b và b - a là 2 số đối nhau
=> (a - b)(b - a) là số nguyên âm
\(a,\left(a-b+c\right)-\left(d+c-b\right)\)
\(< =>a-b+c-d-c+b\)
\(< =>a-d\)
\(b,-35⋮n-8\)
\(=>n-8\inƯ\left(-35\right)\)
Nên ta có bảng sau :
n-8 | 1 | -1 | -5 | 55 | -7 | 7 | -35 | 35 |
n | 7 | 9 | 3 | 13 | 1 | 15 | -27 | 43 |
Vậy ...
\(c,\)a và b là 2 số nguyên khác nhau
=>a-b khác b-a
=>a-b và b-a là 2 số đối nhau
=>(a-b).(b-a) là số nguyên âm
ta có : \(2b=a+c\Leftrightarrow b+b=a+c\Leftrightarrow b-a=c-b\)
\(2c=b+d\Leftrightarrow c+c=b+d\Leftrightarrow c-b=d-c\)
\(\Rightarrow b-a=d-c\)
vì \(a;b;c;d\inℤ\Rightarrow b-a;d-c\inℤ\)
đặt \(b-a=c-b=d-c=k\left(k\inℤ\right)\)
ta có : \(b-a=k\Rightarrow a=b-k\)
\(c-b=k\Rightarrow c=k+b\)
\(d-c=k\Rightarrow d=c+k\)
ta có : \(c^2\ge0\Rightarrow d^2\le c^2+d^2< 4\Rightarrow d^2< 4\)
mà \(d=c+k\Rightarrow\left(c+k\right)^2< 4\Rightarrow\left(k+b+k\right)^2< 4\)
\(\Rightarrow4\left(1+k\right)^2< 4\) ( vì \(b=2\) ) \(\Rightarrow\text{ }\left[2\left(1+k\right)\right]^2< 4\)
\(\Rightarrow4\left(1+k\right)^2< 4\Rightarrow\left(1+k\right)^2< 1\) mà \(\left(1+k\right)^2\ge0\)
\(\Rightarrow0\le\left(1+k\right)^2< 1\Rightarrow0\le1+k< 1\Rightarrow1+k=0\Rightarrow k=-1\)( vì \(k\inℤ\Rightarrow1+k\inℤ\) )
ta có \(c=k+b=-1+2=1\) ( vì \(b=2;k=-1\) )
\(\Rightarrow d=c+k=1+\left(-1\right)=0\) ( vì \(c=1;k=-1\) )
\(\Rightarrow a=b-k=2-\left(-1\right)=3\)
thử lại
\(2b=a+c=2.2=3+1\Rightarrow4=4\) ( thỏa mãn )
\(2c-b+d=2.1=2+0\Rightarrow2=2\) ( thỏa mãn )
\(c^2+d^2< 4\Rightarrow1^2+0^2< 4\Rightarrow1< 4\) ( thỏa mãn )
vậy \(a=3\)
ta có : 2b = a + c⇔b + b = a + c⇔b − a = c − b
2c = b + d⇔c + c = b + d⇔c − b = d − c
⇒b − a = d − c
vì a;b;c;d ∈ ℤ⇒b − a;d − c ∈ ℤ
đặt b − a = c − b = d − c = k k ∈ ℤ
ta có : b − a = k⇒a = b − k
c − b = k⇒c = k + b
d − c = k⇒d = c + k
ta có : c
2
≥ 0⇒d
2
≤ c
2
+ d
2
< 4⇒d
2
< 4
mà d = c + k⇒ c + k
2
< 4⇒ k + b + k
2
< 4
⇒4 1 + k
2
< 4 ( vì b = 2 ) ⇒ 2 1 + k
2
< 4
⇒4 1 + k
2
< 4⇒ 1 + k
2
< 1 mà 1 + k
2
≥ 0
⇒0 ≤ 1 + k
2
< 1⇒0 ≤ 1 + k < 1⇒1 + k = 0⇒k = −1( vì
k ∈ ℤ⇒1 + k ∈ ℤ )
ta có c = k + b = −1 + 2 = 1 ( vì b = 2;k = −1 )
⇒d = c + k = 1 + −1