Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô-si đơn giản =)
Có \(\frac{a+b}{2}\ge\sqrt{ab}\)
Nên
\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\left(1\right)\)
\(a+c\ge2\sqrt{ac}\Leftrightarrow\left(a+c\right)^2\ge4ac\left(2\right)\)
\(c+b\ge2\sqrt{bc}\Leftrightarrow\left(b+c\right)^2\ge4bc\left(3\right)\)
Cộng (1), (2), (3) vế theo vế
\(\Rightarrow2a^2+2b^2+2c^2+2ab+2ac+2bc\ge4ab+4ac+4bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Mà Theo đề \(a+b+c+ab+bc+ac=36\) (a=b=c=3) \(\Leftrightarrow ab+bc+ac=27\)
\(\Rightarrow a^2+b^2+c^2\ge27\left(đpcm\right)\)
Áp dụng bđt phụ \(x^2+y^2+z^2+1\ge\frac{2\left(x+y+z+xy+yz+zx\right)}{3}\)nhé =))
Với \(x\)nguyên bất kì, ta có: \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x^2-1\right)\left(x^2-4\right)+5x\left(x^2-1\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)+5x\left(x-1\right)\left(x+1\right)\)
Có \(x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)là tích của \(5\)số tự nhiên liên tiếp nên chia hết cho \(2,3,5\)mà \(\left(2,3,5\right)=1\)nên nó chia hết cho \(2.3.5=30\).
\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số tự nhiên liên tiếp nên chia hết cho \(2,3\)mà \(\left(2,3\right)=1\)nên chia hết cho \(2.3=6\)do đó \(5x\left(x-1\right)\left(x+1\right)\)chia hết cho \(30\).
Vậy \(x^5-x\)chia hết cho \(30\).
Ta có:
\(a^5+b^5+c^5+d^5-\left(a+b+c+d\right)\)
\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)\)chia hết cho \(30\)
nên \(\left(a^5+b^5+c^5+d^5\right)\equiv\left(a+b+c+d\right)\left(mod30\right)\)
mà \(a^5+b^5+c^5+d^5=30\left(c^5+d^5\right)⋮30\)
suy ra \(a+b+c+d\)chia hết cho \(30\).
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$
$b^2+c^2\geq 2bc$
$c^2+a^2\geq 2ac$
Cộng theo vế các BĐT trên ta được:
$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$
$\Rightarrow ab+bc+ac\leq a^2+b^2+c^2=27$
Vậy GTLN của $P$ là $27$
bài này ở đâu vậy bạn