\(\frac{a}{b}+\frac{b}{a}\ge2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

Xét hiệu :

\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}=\frac{a^2-2ab+b^2}{ab}\)

\(=\frac{a^2-ab-ab+b^2}{ab}=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)\(=\frac{\left(a-b\right)^2}{ab}\)

Vì \(\left(a-b\right)^2\ge0\) và \(ab>0\)( do a, b > 0 )

\(\Rightarrow\frac{\left(a-b\right)^2}{ab}>0\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\)

Hay \(\frac{a}{b}+\frac{b}{a}\ge2\)\(\left(đpcm\right)\)

7 tháng 5 2019

Ta có: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\left(đpcm\right)\)

23 tháng 5 2018

Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2-2ab+b^2}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\) ( do a;b > 0 )

Dấu "=" xảy ra khi :

\(a-b=0\Leftrightarrow a=b\)

Vậy ...

23 tháng 5 2018

Áp dụng bđt AM-GM: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ab}}=2\)

Dấu "=" xảy ra khi: a=b 

25 tháng 4 2019

Đề sai rồi bạn ơi, nếu b = 0 thì phân số a/b đâu có nghĩa.

sửa lại b>0

Ta có    ta có a/b + b/a \(\ge\) 2 (a^2 + b^2 )/ab \(\ge\) 2 a^2 + b^2 \(\ge\) 2ab =>a^2 -2ab + b^2 \(\ge\) 0 =>(a - b)^2 >= 0 luôn đúng suy ra điều phải chứng minh dấu '" = "' xảy ra khi và chỉ khi a = b

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

16 tháng 8 2020

TA CÓ:   \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

TA LUÔN CÓ:   \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

TỪ (1) VÀ (2) =>   \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\) 

VẬY TA CÓ ĐPCM.

16 tháng 8 2020

Cho  \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)

                             \(\frac{c}{a+b+c}< \frac{c}{c+a}\)

Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

                                       1 < B

CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)

Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2

                                      

                                       
 

3 tháng 4 2017

Quy đồng mẫu số ở vế trái:\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\)

Ta cần chứng minh : \(\frac{a^2+b^2}{ab}\)\(\ge\)\(\Leftrightarrow\)\(a^2+b^2\ge2ab\)

Chứng minh bất đẳng thức Cosi(lớp 8) : Ta luôn có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow\)\(a^2-2ab+b^2\ge0\)\(\Rightarrow a^2+b^2\ge0+2ab=2ab\)(1)

Từ (1) suy ra bài toán luôn đúng với mọi a,b hay \(\frac{a^2+b^2}{ab}\ge2\)hay \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Rightarrow\)đpcm.

25 tháng 9 2015

Không giảm tính tổng quát, giả sử a > b => a = b + m (m > 0)

Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

                       \(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu = xảy ra khi m = 0 <=> a = b)

25 tháng 9 2015

ta có (a-b)2\(\ge\)0

a2+b2\(\ge\)2ab (1)

ta có \(\frac{a}{b} +\frac{b}{a}=\frac{a^2+b^2}{ab}\)

kết hợp với (1) ta có \(\frac{a}{b} +\frac{b}{a}=\frac{a^2+b^2}{ab}\) \(\ge\frac{2ab}{ab}=2\)

vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

9 tháng 5 2015

Giả sử \(a\ge b\) suy ra a = b + m (m \(\ge\) 0).

Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

\(=\frac{b}{b}+\frac{m}{b}+\frac{b}{b+m}=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}\)

\(=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu = xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\) a = b)

   1 đ-ú-n-g nha, nghĩ mãi mới ra đó !

 

28 tháng 11 2018

Ta có:

\(\frac{a}{b}>0\Rightarrow a,b\ne0\)

Giả sử: \(a\ge b\)Đặt: \(a=b+m\left(m\in N\right)\Rightarrow\frac{b+m}{b}+\frac{b}{b+m}=\frac{a}{b}+\frac{b}{a}\)

\(=1+\frac{m}{b}+1-\frac{m}{b+m}=2+\frac{m}{b}-\frac{m}{b+m}\) Vì: \(b\le b+m\Rightarrow\frac{m}{b}\ge\frac{m}{b+m}\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(ĐPCM\right)\)

4 tháng 4 2017

lớp 6 làm thì hơi dài đấy, nếu bạn muốn thì có thể áp dụng các bất đẳng thức của lớp trên cho nhanh