K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

bai toan nay khó

14 tháng 2 2016

khó mới hỏi chứ

8 tháng 5 2019

Đặt k=a2+b2ab+1(k∈Z)k=a2+b2ab+1(k∈Z)  
Giả sử kk không là số chính phương 
Cố định số nguyên dương kk, sẽ tồn tại cặp (a,b)(a,b) . Ta kí hiệu 
S={(a,b)∈NxN|a2+b2ab+1=k}S={(a,b)∈NxN|a2+b2ab+1=k} 
Theo nguyên lí cực hạn thì các cặp thuộc SS tồn tại (A,B)(A,B) sao cho A+BA+B đạt min 
Giả sử A≥B>0A≥B>0 . Cố định BB ta còn số nữa khác AA thảo phương trình k=x+B2xB+1k=x+B2xB+1 
⇔x2−kBx+B2−k=0⇔x2−kBx+B2−k=0 phương trình có nghiệm AA
Theo Viet : {A+x2=kBA.x2=B2−k{A+x2=kBA.x2=B2−k 
Suy ra x2=kB−A=B2−kAx2=kB−A=B2−kA 
Dễ thấy x2x2 nguyên. 
Nếu x2<0x2<0 thì x22−kBx2+B2−k≥x22+k+B2−k>0x22−kBx2+B2−k≥x22+k+B2−k>0 (vô lí) . Suy ra x2≥0x2≥0 do đó (x2,B)∈S(x2,B)∈S  
Do A≥B>0⇒x2=B2−kA<A2−kA<AA≥B>0⇒x2=B2−kA<A2−kA<A 
Suy ra x2+B<A+Bx2+B<A+B (trái với giả sử A+BA+B đạt min) 
Suy ra kk là số chính phương

1 tháng 3 2020

a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5

mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)

b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn

(a,b).[a,b]=a.b=d.d.6

a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1

8 tháng 12 2024

😁😁😁😁