K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

7 tháng 10 2020

b) ta có: 30=2.3.5

\(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\)

\(\Rightarrow\hept{\begin{cases}a^5\equiv a^2\equiv a\left(mod2\right)\\b^3\equiv b\left(mod3\right)\\c^5\equiv c\left(mod5\right)\end{cases}\Rightarrow b^5\equiv b^3\equiv b\left(mod3\right)}\)

\(\Rightarrow a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\)

7 tháng 10 2020

\(a^2+b^2+c^2=\left(a+b+c\right)+\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

\(=\left(a+b+c\right)+a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)

\(=\left(a+b+c\right)+\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)\)

\(mà\)\(a\left(a-1\right)\left(a+1\right)⋮6\)

\(b\left(b-1\right)\left(b+1\right)⋮6\)

\(c\left(c-1\right)\left(c+1\right)⋮6\)

\(a+b+c⋮6\)

\(\Leftrightarrow(a^3+b^3+c^3)⋮6\)\((đpcm)\)

26 tháng 6 2016

Đặt: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2=\)

\(S=a^3-a+b^3-b+c^3-c+3a^2-3a+3b^2-3b+3c^2-3c+4\cdot\left(a+b+c\right)\)

Ta có: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6.

Tương tự b3 - b và c3 - c cũng chia hết cho 6. (1).

Mặt khác, \(3a^2-3a=3a\left(a-1\right)\)chia hết cho 3 mà a(a-1) là tích 2 số tự nhiên liên tiếp => a(a-1) chia hết cho 2. Do đó 3a(a-1) chia hết cho 6 => 3a2 - 3a chia hết cho 6. Tương tự, 3b2 - 3b; 3c2 - 3c cũng chia hết cho 6. (2)

Theo đề bài thì a+b+c chia hết cho 3 nên 4*(a+b+c) chia hết cho 6 (3)

Từ (1); (2); (3) suy ra S là tổng các số chia hết cho 6 nên S chia hết cho 6. đpcm

6 tháng 11 2015

Ehhh ohhh 
Sinh con ra bằng câu hát ru quen thuộc 
Dìu đôi chân mong con lớn không (Con lớn khôn, nghe lời mẹ) 
Dù mồ hôi thấm vai chỉ cần thấy con cười Là những âu lo phiền muộn tan trôi 
Ấn nút nhớ thời gian hãy ngưng quay lại Đổ cơn mưa yêu thương đến đây (Mang đến đây, bao nụ cười) 
Chà mạnh đi vết chai sạn trên tay mẹ 
Thả đi giấc mơ này (Chắp cánh con tung bay) 
Thả vào mây nhẹ nhàng đưa theo cơn gió 
Mai này con lớn lên Mang ngàn lời ca cất lên 
Đem một tình yêu thiết tha, giúp cha dang đôi tay ôm lấy vai mẹ Mai này con lớn lên 
Kiên cường vượt qua bão giông 
Chỗ dựa bình yên khi hoàng hôn xuống bình minh ấm bên mẹ mãi thôi 
Uh la la la la la lal a la 
Uh la la la la la lal a la 
Con nay đã lớn không muốn phụ giúp mẹ những việc giản đơn mà 
Thu dọn dẹp nhà cửa, giặc giũ quần áo cứ để con no mà 
Con nhận ra một điều là 
Con không cần nữa những món quà Đôi tay con giờ đây có thể đảm nhận hết mọi công việc nhỏ trong nhà. 
Nghe lời mẹ dặn, không làm mẹ tổn thương, không khiến mẹ phải lo Nghe lời mệ dặn, soạn bài vở chu đáo, học chăm ngoan ngày ngày 
Ấn nút nhớ, thả giắc mơ, con chìm vào những vần thơ 
Đổ đong đầy, chà hao gầy, ưu phiền trong mẹ tan theo làn mây 
Ấn nút nhớ thời gian hãy ngưng quay lại 
Đổ cơn mưa yêu thương đến đây (Mang đến đây, bao nụ cười) 
Chà mạnh đi vết chai sạn trên tay mẹ 
Thả đi giấc mơ này (Chắp cánh con tung bay) Thả vào mây nhẹ nhàng đưa theo cơn gió 
Mai này con lớn lên 
Mang ngàn lời ca cất lên 
Đem một tình yêu thiết tha, giúp cha dang đôi tay ôm lấy vai mẹ 
Mai này con lớn lên 
Kiên cường vượt qua bão giông
Chỗ dựa bình yên khi hoàng hôn xuống bình minh ấm bên mẹ mãi thôi
Uh la la la la la lal a la 
Uh la la la la la lal a la

avt244238_60by60.jpgĐinh Đức Tài: bài này là bài Ấn nút nhớ ... thả giấc mơ của Sơn Tùng M-TP đúng hông

24 tháng 10 2018

     

       \(a^3+b^3+c^3-\left(a+b+c\right)\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^2-c\right)\)

\(=a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)(3)

Vì a,b,c là các số nguyên nên \(a\left(a-1\right)\left(a+1\right),b\left(b-1\right)\left(b+1\right),c\left(c-1\right)\left(c+1\right)\)

là tích 3 số nguyên liên tiếp nên chúng chia hết cho 6

\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)⋮6\)(1)

Mà \(a+b+c⋮6\) (2)

Từ (1), (2) và (3) ta được: \(a^3+b^3+c^3⋮6\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2017

Lời giải:

Ta có \(a+b+c\) chia hết cho $6$

\(\Leftrightarrow (a+b+c)^3\vdots 6\Leftrightarrow a^3+b^3+c^3+3(a+b)(b+c)(c+a)\vdots 6\) \((1)\)

Theo định lý Dirichlet, trong ba số \(a,b,c\) luôn tồn tại ít nhất hai số có cùng số dư khi chia cho $2$, không mất tính tổng quát giả sử là hai số đó là \(a\equiv b\equiv r\pmod 2\)

\(\Rightarrow a+b\equiv 2r\equiv 0\pmod 2\)

Do đó \((a+b)(b+c)(c+a)\vdots 2\forall a,b,c\in\mathbb{N}\Rightarrow 3(a+b)(b+c)(c+a)\vdots 6\)

Kết hợp với $(1)$ suy ra \(a+b+c\vdots 6\Leftrightarrow a^3+b^3+c^3\vdots 6\)

Ta có đpcm

1 tháng 5 2019

Ta có a+b+ca+b+c chia hết cho 66

(a+b+c)36a3+b3+c3+3(a+b)(b+c)(c+a)6⇔(a+b+c)3⋮6⇔a3+b3+c3+3(a+b)(b+c)(c+a)⋮6 (1)(1)

Theo định lý Dirichlet, trong ba số a,b,ca,b,c luôn tồn tại ít nhất hai số có cùng số dư khi chia cho 22, không mất tính tổng quát giả sử là hai số đó là abr(mod2)a≡b≡r(mod2)

a+b2r0(mod2)⇒a+b≡2r≡0(mod2)

Do đó (a+b)(b+c)(c+a)2a,b,cN3(a+b)(b+c)(c+a)6(a+b)(b+c)(c+a)⋮2∀a,b,c∈N⇒3(a+b)(b+c)(c+a)⋮6

Kết hợp với (1)(1) suy ra a+b+c6a3+b3+c36a+b+c⋮6⇔a3+b3+c3⋮6

Ta có đpcm.Chuc ban thi tot

1 tháng 7 2016

a) Phần này dễ, bạn cứ làm theo hướng của phần b là được. Mình sẽ làm phần b khó hơn. 

b) Ta có: a3-a = a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số tự nhiên liên tiếp nên

a.(a-1).(a+1) chia hết cho 3.

 => a3- a chia hết cho 3.

Chứng minh tương tự ta có b3 - b chia hết cho 3 và c3 - c chia hết cho 3 với mọi b,c thuộc N.

=> a3+b3+c- (a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc N.

Do đó nếu  a3+b3+cchia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.

Vậy đpcm.

2 tháng 7 2016

Tớ làm thêm một cách cho câu b nhé ;) 

Ta có: \(a^3+b^3⋮3\Rightarrow a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2⋮3\) \(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)⋮3\)

Do a và b là các số tự nhiên => \(3ab\left(a+b\right)⋮3=>\left(a+b\right)^3⋮3\)

=> a+b chia hết cho 3