K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Ta có : \(2=\left[\left(x+y+z\right)+t\right]\ge4t\left(x+y+z\right)\)

\(\Rightarrow1\ge2t\left(x+y+z\right)\) (1)

Lại có : \(\left(x+y+z\right)^2=\left[\left(x+y\right)+z\right]^2\ge4z\left(x+y\right)\) (2)

\(\left(x+y\right)^2\ge4xy\) (3)

Nhân (1) , (2) , (3) theo vế được : 

\(\left(x+y\right)^2\left(x+y+z\right)^2\ge16xyzt\left(x+y\right)\left(x+y+z\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+z\right)\ge16xyzt\Leftrightarrow\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge16\)

Suy ra Min B = 16 \(\Leftrightarrow\begin{cases}x+y+z=t\\x+y=z\\x=y\\x+y+z+t=2\end{cases}\)  \(\Leftrightarrow\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\\t=1\end{cases}\)

4 tháng 2 2017

bạn Ngọc ơi! cho mình hỏi vì sao bạn có được hàng đầu tiên vậy? Nó liên kết với hàng 3 như thế nào? Hàng 1 không bình phương nhưng sao lại vẫn có được như hàng 3?

12 tháng 3 2018

a) x+y+z=1

⇔[(x+y)+z]2=1

Áp dụng BĐT cô si cho 2 số ta có

(a+b)+c ≥ 2\(\sqrt{\left(a+b\right)c}\)

⇔[(a+b)+c)]2 \(\ge4\left(a+b\right)c\)

⇔1 ≥ 4(a+b)c

nhân cả 2 vế cho số dương \(\dfrac{x+y}{xyz}\) được

\(\dfrac{x+y}{xyz}\ge\dfrac{4\left(x+y\right)^2c}{xyz}\)

\(\dfrac{x+y}{xyz}\ge\dfrac{4z.4xy}{xyz}=16\)

Min A =16 khi \(\left\{{}\begin{matrix}x+y=z\\x=y\\x+z+y=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{4};z=\dfrac{1}{2}}\)

NV
27 tháng 1 2021

\(B\ge\dfrac{4\left(x+y+z\right)\left(x+y\right)}{\left(x+y\right)^2zt}=\dfrac{4\left(x+y+z\right)}{\left(x+y\right)zt}\ge\dfrac{16\left(x+y+z\right)}{\left(x+y+z\right)^2t}\)

\(B\ge\dfrac{16}{\left(x+y+z\right)t}\ge\dfrac{64}{\left(x+y+z+t\right)^4}=64\)

\(B_{min}=64\) khi \(\left(x;y;z;t\right)=\left(\dfrac{1}{8};\dfrac{1}{8};\dfrac{1}{4};\dfrac{1}{2}\right)\)

28 tháng 1 2021

Áp dụng BĐT Cô si ta có :

+) \(x+y\ge2\sqrt{xy}\)

+) \(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

+) \(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\) 

Nhân từng vế với vế của các BĐT trên ta có :

\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

\(\Leftrightarrow2\left(x+y\right)\left(x+y+z\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)

\(\Leftrightarrow B=\dfrac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge16\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x+y=z\\x+y+z=t\\x+y+z+t=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y=\dfrac{1}{4}\\z=\dfrac{1}{2}\\t=1\end{matrix}\right.\)

Vậy...

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:Bài 1,cho a,b,c là các số dương . Tìm GTNN của :a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:                            \(A=\frac{x+y}{xyz}\)         b, cho các số dương x,y,z,t có...
Đọc tiếp

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:

Bài 1,cho a,b,c là các số dương . Tìm GTNN của :

a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)

b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)

Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:

                            \(A=\frac{x+y}{xyz}\)

         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của 

                           \(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)

Bài 4:  a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)

          b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)

2
18 tháng 7 2016

Bài 1:a,

A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc 

Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2 

b,làm tt câu a 

18 tháng 7 2016

câu 1 của bạn chính sác đấy

25 tháng 3 2017

Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)

\(\Leftrightarrow F=E\)

Từ đó ta có:

\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)

\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)

\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)

\(\Rightarrow F\ge\frac{1}{4}\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 3 2017

Bạn ơi, cho mình hỏi này

Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\)  và sao có  \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)  

Giải đáp tận tình hộ mình nhé.

23 tháng 8 2016

câu nào cx ghi là lớp 8 nhưng thực ra lớp 9 cx k nổi vc

23 tháng 8 2016

lớp 8 đó anh Thắng ạ =.="