Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
5x2 - 7 = 38 => x2 = 9 => x = \(\pm\)3
Từ đây thay x vào \(\dfrac{3x-2}{4}\) để tìm y,z
a) Ta có: 3x = 2y; 4x = 2z
⇒ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)
⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
⇒ \(\dfrac{x}{2}=3\) ⇒ x = 6
\(\dfrac{y}{3}=3\) ⇒ y = 9
\(\dfrac{z}{4}=3\) ⇒ z = 12
Vậy x = 6 ; y = 9 ; z = 12
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
⇒ \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
⇒ \(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)
và 2x2 + 3y2 - 5z2 = -405
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)
+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2
⇒ x2 = 36 ⇒ x = 6 hoặc x = -6
+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3
⇒ y2 = 81 ⇒ y = 9 hoặc y = -9
+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5
⇒ z2 = 144 ⇒ z = 12 hoặc z = -12
Vậy...................................( bạn tự vậy nhé )
c) Giống câu a ( bạn tự chép lại )
d) Mik ko bt lm
CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!
\(\dfrac{7x-3z}{5}=\dfrac{3y-5x}{7}=\dfrac{5z-7y}{3}\)
\(\Rightarrow\dfrac{35x-15z}{25}=\dfrac{21y-35x}{49}=\dfrac{15z-21y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{35x-15z}{25}=\dfrac{21y-35x}{49}=\dfrac{15z-21y}{9}\)
\(=\dfrac{35x-15z+21y-35x+15z-21y}{25+49+9}\)
\(=\dfrac{0}{25+49+9}=0\)
\(\Rightarrow\left\{{}\begin{matrix}7x=3z\Rightarrow\dfrac{x}{3}=\dfrac{z}{7}\\3y=5x\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\\5z=7y\Rightarrow\dfrac{z}{7}=\dfrac{y}{5}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{3+5+7}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\\z=2.7=14\end{matrix}\right.\)
Tương tự
a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)
\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)
\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)
Xin lỗi mình chỉ làm được câu a)
Ta có: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) ; \(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)
=>\(\dfrac{x}{15}\)=\(\dfrac{y}{20}\)=\(\dfrac{z}{24}\)=k
=>x=15k
y=20k
z=24k
Thế x=15k; y=20k; z=24k vào biểu thức A, ta có:
\(\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)=\(\dfrac{30k+60k+96k}{45k+60k+120k}\)=\(\dfrac{k.\left(30+60+96\right)}{k.\left(45+60+120\right)}\)=\(\dfrac{186}{225}\)=\(\dfrac{62}{75}\)
Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)
Thay (1) vào P
=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)
=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)
=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)
lộn đề .
Thay 2z + 3y + 4z = 2x+ 3y + 4z nha