Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: Cho a, b, c, d là 4 số dương thoả mãn abcd = 1. Chứng minh rằng: \(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\ge8\)
~ ~ ~ ~ ~
Áp dụng BĐT AM - GM, ta có:
\(\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\)
\(\ge2\sqrt[4]{\left(1+a\right)\left(1+b\right)}\times2\sqrt[4]{\left(1+c\right)\left(1+d\right)}\)
\(=4\sqrt[4]{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)
\(\ge4\sqrt[4]{2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}\times2\sqrt{d}}\)
\(=4\sqrt[4]{16\sqrt{abcd}}\)
= 8 (đpcm)
Dấu "=" xảy ra khi a = b = c = d = 1
Cần c/m: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge3\sqrt{2}\)
Mặt khác \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\left(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)\ge9\)
Nên ta chỉ cần c/m \(P=\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\le\frac{9}{3\sqrt{2}}=\frac{3\sqrt{2}}{2}\)
Ta có
\(P.\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{\left(a+b\right).2}}+\frac{1}{\sqrt{\left(b+c\right).2}}+\frac{1}{\sqrt{\left(c+a\right).2}}\)
\(=\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{b+c}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{c+a}}.\sqrt{\frac{1}{2}}\)
\(\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{c+a}+\frac{1}{2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\frac{3}{4}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)+\frac{3}{4}\)
\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{4}=\frac{1}{4}.3+\frac{3}{4}=\frac{3}{2}\)
Suy ra \(P\le\frac{3}{2}:\frac{1}{\sqrt{2}}=\frac{3\sqrt{2}}{2}\)
BĐT được c/m
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
đặt \(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=>A^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(=>A^2\le\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right].3\)
\(=>A^2\le\left[2\left(a+b+c\right)\right]3=2.3=6\)
\(=>A\le\sqrt{6}\left(dpcm\right)\)
dấu"=" xảy ra<=>a=b=c=1/3
Ta có:\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)=3.2=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Dấu "=" xảy ra <=> a=b=c=1/3