K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Sửa đề: CM: \(a^2+b^2=2\)

Ta có:

\(a^{2006}+b^{2006}=a^{2004}+b^{2004}\)

Đặt \(\hept{\begin{cases}a^2=x\\b^2=y\end{cases}}\)thì ta có

\(x^{1003}+y^{1003}=x^{1002}+y^{1002}\)

\(\Leftrightarrow\left(x^{1003}+y^{1003}+x^{1002}y+xy^{1002}\right)-xy\left(x^{1002}+y^{1002}\right)=x^{1002}+y^{1002}\)

\(\Leftrightarrow\left(x^{1002}+y^{1002}\right)\left(x+y\right)-xy\left(x^{1002}+y^{1002}\right)=x^{1002}+y^{1002}\)

\(\Leftrightarrow\left(x^{1002}+y^{1002}\right)\left(x+y-xy-1\right)=0\)

\(\Leftrightarrow x+y-xy-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}\)

Thế ngược lại bài ban đầu ta tìm được

\(\hept{\begin{cases}x=1\\y=1\end{cases}}\)(vì x, y là số dương)

Vậy \(a^2+b^2=2\)  

21 tháng 3 2017

vẫn cs khả năng a2 + b2 < 2 . vì nếu x = 1 ; y = 0 thì (x-1)(1-y) = 0

12 tháng 2 2016

\(a^{2006}+b^{2006}=a^{2004}+b^{2004}\)

\(\Rightarrow a^{2004}.\left(a^2-1\right)=b^{2004}.\left(1-b^2\right)\)

Vì a là số dương \(\Rightarrow a^2-1\ge0\)

\(\Rightarrow a^{2004}.\left(a^2-1\right)\ge0\)

\(\Rightarrow b^{2004}.\left(1-b^2\right)\ge0\)

\(\Rightarrow b^2\le1\)

Ta lại có:

\(a^{2004}+b^{2004}=a^{2006}+b^{2006}\)

\(a^{2004}.\left(1-a^2\right)=b^{2004}.\left(b^2-1\right)\)

b là số nguyên dương \(\Rightarrow b^2-1\ge0\)

\(\Rightarrow b^{2004}.\left(b^2-1\right)\ge0\)

\(\Rightarrow a^{2004}.\left(1-a^2\right)\ge0\)

\(\Rightarrow a^2\le1\)

\(\Rightarrow a^2+b^2\le1+1=2\)

\(\Rightarrow\frac{a^2+b^2}{32}\le\frac{2}{32}=2^{-4}\)

 

bất đẳng thức là cái j??

17 tháng 8 2018
Giúp mình với Mai đi học rồi
17 tháng 8 2018

mik ko biết sao giúp

17 tháng 8 2018

Huhu chúng ta cùng cảnh  ngộ

18 tháng 8 2018

uk . mk thấy bạn đăng nhưng ko ai trả lời thì mk đăng hộ vs cả bài này mk cũng biết làm hihi

25 tháng 4 2016

A           xp=x+x2+x^3+x^4+..................+x^2016

=>xp-p= x^2016-1 ban nhe

B        ap dung dau hieu chia het cho 3 la tong chu so chia het cho 3

9 tháng 12 2015

1)Đặt n + 1945 = a² (1) (a là số tự nhiên) 
Đặt n + 2004 = b² (2) (b là số tự nhiên) 
Do (n + 2004) > (n + 1945) 
=> b² > a² 
=> b > a (Do a và b là số tự nhiên) 
Từ (1) và (2) => b² - a² = (n + 2004) - (n + 1945) 
<=> (b + a)(b - a) = n + 2004 - n - 1945 
<=> (b + a)(b - a) = 59 
=> (b + a) và (b - a) là ước tự nhiên của 59 
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có: 
b + a = 59 (3) và b - a = 1 (4) 
cộng vế với vế của (3) và (4) ta được: 
(b + a) + (b - a) = 59 + 1 
<=> b + a + b - a = 60 
<=> 2b = 60 
<=> b = 30 
Thay b = 30 vào (2) ta được 
n + 2004 = 30² 
<=> n + 2004 = 900 
<=> n = 900 - 2004 
<=> n = -1104 
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương

9 tháng 12 2015

n =900 -2004 = - nhé

 

Xét hiệu a2+b2+c2+m2+n2+p2 - (a+b+c+m+n+p)

=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) \(⋮\)2

mà a2+b2+c2+m2+n2+p2\(\ge\)6 ( vì a,b,c,m,np nguyên dương)

=> a+b+c+m+n+p là hợp số

11 tháng 4 2018

Xét hiệu a2+b2+c2+m2+n2+p2  - (a+b+c+m+n+p)

=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) ⋮ 2

mà a2+b2+c2+m2+n2+p2 ≥ 6 ( vì a,b,c,m,np nguyên dương)

=> a+b+c+m+n+p là hợp số