K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Do a,b đều dương nên a^3 + b^3 dương => a - b dương 

Nhân cả hai vế của bất đẳng thức cần chứng minh với a - b ta được : 

    \(a^2+b^2+ab<1\) 

<=> \(\left(a-b\right)\left(a^2+b^2+ab\right) 

<=> \(a^3-b^3=a^3+b^3\) 

do b dương nên b^3 > 0 => bất đẳng thức cuối cùng đúng

Vậy bất đẳng thức đã cho là đúng (đpcm)

24 tháng 4 2017

bổ sung : do a - b dương nên khi nhân a - b vào cả hai vế thì BĐT không đổi chiều.

25 tháng 3 2017

Ta có:

\(\left(a+b-c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ac+2bc-2ab\)

Mà \(a^2+b^2+c^2=\frac{5}{3}< 2\)

\(\Rightarrow2ac+2bc-2ab< 2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

10 tháng 8 2017

xin lỗi mik viết nhầm chỉ có 1 số 8 thôi

10 tháng 8 2017

\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\Rightarrow A\ge\left(a+b+1\right).2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)

\(\Rightarrow A\ge\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)

\(\Rightarrow A\ge2\sqrt{ab}+2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2\)

\(\Rightarrow A\ge2+4+2=8\)

"=" khi \(a=b=1\)