\(\frac{a^2+b^2}{a^2b^2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Chỉ làm được 1 tý thôi:

\(a+b+1=8ab\Rightarrow\frac{a+b+1}{ab}=\frac{8ab}{ab}\)

                                   \(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{ab}=8.\)

19 tháng 5 2019

Đáp án là 8 á. xảy ra khi a=b=\(\frac{1}{2}\) nhưng mình k biết cách làm.

21 tháng 8 2019

Dạng này nhìn mệt vãi:(

Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)

Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:

Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:

\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v

Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!

20 tháng 8 2023

hay bạn ơi

 

20 tháng 2 2020

1 . 

Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)

Chia cả hai vế cho abc > 0 

\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)

Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)

Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)

\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)

\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)

\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)

Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)

Vậy GTNN của C là 17 khi a =2; b =1; c = 1

20 tháng 2 2020

2 . 

Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên 

\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)

\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)

\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tự ta có:

\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)

\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)

Cộng vế theo vế (1), (2) và (3) ta được: 

\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)

Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)

\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)

Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)

Chúc bạn học tốt !!!

25 tháng 3 2020

a - b = 1 => a = 1 + b 

=> \(S=\frac{\left(b+1\right)^2+b^2}{b}=\frac{2b^2+2b+1}{b}=2b+\frac{1}{b}+2\ge2\sqrt{2b.\frac{1}{b}}+2=2\sqrt{2}+2\)

Dấu bằng xảy ra <=> \(\hept{\begin{cases}2b=\frac{1}{b}\\a=1+b\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt{2}}\\a=1+\frac{1}{\sqrt{2}}\end{cases}}\)

Vậy GTNN S = \(2\sqrt{2}+2\)