Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sum\limits^{ }_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum\limits^{ }_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\sum\limits^{ }_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)
Sử dụng bất đẳng thức Cauchy-Schwarz và AM-GM ta có:
\(\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)
Cộng hai bất đẳng thức ta được:
\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ac}}\ge3\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
Lời giải:
Không mất tổng quát giả sử \(c=\min (a,b,c)\)
Khi đó, do \(ab+bc+ac=3\Rightarrow ab\geq 1\).
Với $ab\geq 1$ ta có bổ đề sau: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)
Để cm bổ đề trên rất đơn giản. Quy đồng và biến đổi tương đương thu được \((a-b)^2(ab-1)\geq 0\) (luôn đúng với mọi \(ab\geq 1\) )
Sử dụng bổ đề vào bài toán:
\(\Rightarrow \text{VT}\geq \frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+ab+3}{abc^2+ab+c^2+1}(*)\)
Giờ ta sẽ cm \(\frac{2c^2+ab+3}{abc^2+ab+c^2+1}\geq \frac{3}{2}(**)\)
\(\Leftrightarrow 2(2c^2+ab+3)\geq 3(abc^2+ab+c^2+1)\)
\(\Leftrightarrow c^2+3\geq 3abc^2+ab\)
\(\Leftrightarrow c^2+bc+ac\geq 3abc^2\)
\(\Leftrightarrow c+b+a\geq 3abc\).
BĐT trên đúng do theo AM-GM: \(3(a+b+c)=(ab+bc+ac)(a+b+c)\geq 9abc\Rightarrow a+b+c\geq 3abc\) )
Do đó $(*)$ được cm.
Từ \((*),(**)\Rightarrow \text{VT}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c=1$
Vì abc=1 nên tồn tại x,y,z sao cho \(a=\dfrac{x}{y};b=\dfrac{y}{z};c=\dfrac{z}{x}\)
\(VT=\sum\dfrac{a}{ab+1}=\sum\dfrac{\dfrac{x}{y}}{\dfrac{x}{y}.\dfrac{y}{z}+1}=\sum\dfrac{xz}{xy+yz}\)
Đổi \(\left(xy;yz;zx\right)=\left(m,n,p\right)\)thì \(VT=\sum\dfrac{m}{n+p}\ge\dfrac{3}{2}\left(BĐT-Nesbit\right)\)( đpcm)
Dấu = xảy ra khi m=n=p hay x=y=z hay a=b=c=1.
Áp dụng BĐT Cauchy- schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\)
\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}\)\(+\frac{1}{ab+bc+ca}\)
\(+\frac{2007}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)
\(=\frac{6030}{\left(a+b+c\right)^2}\ge670\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
Đặt \(\left(a,b,c\right)\rightarrow\left(\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}\right)\)
BĐT cần c/m tương đương với
\(\sum\dfrac{yz}{xy+xz+2yz}\le\dfrac{3}{4}\)
\(\Leftrightarrow\sum\dfrac{xy+xz}{xy+xz+2yz}\ge\dfrac{3}{2}\)
Ta có \(\sum\dfrac{xy+xz}{xy+xz+2yz}\ge\dfrac{\left(2\sum xy\right)^2}{\sum\left(xy+xz+2yz\right)\left(xy+xz\right)}=\dfrac{4\left(\sum xy\right)^2}{2\sum x^2y^2+6\sum x^2yz}\)
Như vậy ta cần c/m \(\dfrac{4\left(\sum xy\right)^2}{2\sum x^2y^2+6\sum x^2yz}\ge\dfrac{3}{2}\)
\(\Leftrightarrow8\left(\sum xy\right)^2\ge6\sum x^2y^2+18\sum x^2yz\)
\(\Leftrightarrow8\left(\sum xy\right)^2\ge6\left(\sum xy\right)^2+6\sum x^2yz\)
\(\Leftrightarrow\left(\sum xy\right)^2\ge3\sum x^2yz\) (luôn đúng)
Ta có:
\(\dfrac{1}{ab+a+2}\le\dfrac{1}{4}\left(\dfrac{1}{ab+1}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{c}{1+c}+\dfrac{1}{a+1}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{1}{4}\left(\dfrac{a+1}{a+1}+\dfrac{b+1}{b+1}+\dfrac{c+1}{c+1}\right)=\dfrac{3}{4}\)
ta có:\(A=\dfrac{1}{a^2+b^2+c^2}+\dfrac{2009}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}+\dfrac{2007}{ab+bc+ca}\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}\ge\dfrac{9}{9}=1\)
mà \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le3\)
do đó \(A\ge1+\dfrac{2007}{3}=670\)
dấu = xảy ra khi và chỉ khi a=b=c=1(làm tắt)
ông này hay dùng svac nhể :v