Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b=x+y\)
\(\Rightarrow a-x=y-b\) (1)
\(a^2+b^2=x^2+y^2\)
\(\Rightarrow a^2-x^2=y^2-b^2\)
\(\Leftrightarrow\left(a-x\right)\left(a+x\right)=\left(y-b\right)\left(y+b\right)\)
\(\Leftrightarrow\left(a-x\right)\left(a+x\right)-\left(a-x\right)\left(y+b\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left[\left(a+x\right)-\left(y+b\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-x=0\\\left(a+x\right)-\left(y+b\right)=0\end{matrix}\right.\)
Với \(a-x=0\) , kết hợp với (1) ta được:
\(\left\{{}\begin{matrix}a-x=y-b\\a-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=y\\a=x\end{matrix}\right.\)
\(\Rightarrow a^{2016}+b^{2016}=x^{2016}+y^{2016}\)
Với \(a-x=y-b\)
\(\left\{{}\begin{matrix}a+b=x+y\\a+x=y+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=y\\b=x\end{matrix}\right.\)
\(\Rightarrow a^{2016}+b^{2016}=x^{2016}+y^{2016}\)
1) Từ \(x+y+z=6\) và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)
Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)
Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.
Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm
Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)
-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9
Vậy mệnh đề đúng với n=1
-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó, \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1
Ta phải cm mệnh đề cũng đúng với k+1:
Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)
<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)
Ta thấy:
\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.
Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3
-1 chia 9 dư -1
Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9
Kết luận: Mệnh đề đúng với mọi n thuộc Z
Ta có : \(x^4-7x^2+y^2+16=2xy\)
=> \(\left(x^2-8x^2+16\right)+\left(x^2-2xy+y^2\right)=0\)
=> \(\left(x-4\right)^2+\left(x-y\right)^2=0\)
Vì \(\left(x-4\right)^2\ge0 \forall x ,\left(x-y\right)^2 \ge0 \forall x,y \)
=> \(\left(x-4\right)^2+\left(x-y\right)^2\ge0 \forall x,y\)
=> \(\hept{\begin{cases}x-4=0\\x-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=y=4\end{cases}}}\)
Thay vào \(A=4^{2016}.4^{2017}-4^{2017}.4^{2016}+4+4=8\)
Vậy A=8