Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án
Theo đề bài ta có
\(a\left(1-a\right)\left(1-b\right)\ge0\)=> \(a^2b\ge a^2+ab-a\)
\(b\left(1-c\right)\left(1-b\right)\ge0\)=> \(b^2c\ge b^2+bc-b\)
Tương tự \(c^2a\ge c^2+ac-c\)
Khi đó
\(VT\ge a^2+b^2+c^2+2ab+2bc+2ac-\left(a+b+c\right)=2^2-2=2\)(ĐPCM)
Dấu bằng xảy ra khi \(a=b=1,c=0\)và các hoán vị
\(DPCM\Leftrightarrow P=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\le\frac{108}{529}\)
Ta có: \(0\le a\le b\le c\le1\Rightarrow a^2\left(b-c\right)\le0\left(1\right)\)
\(b^2\left(c-b\right)=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)\le4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4c^3}{27}\)
\(\Rightarrow P\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2\left(1-\frac{23c}{27}\right)=\frac{23c}{54}.\frac{23c}{54}\left(1-\frac{23c}{27}\right).\frac{54^2}{23^2}\)
Tiếp
\(\le\left(\frac{\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}}{3}\right)^3.\frac{54^2}{23^2}=\frac{1}{27}.\frac{54^2}{23^2}=\frac{108}{529}\)
Dấu bằng xảy ra\(\Leftrightarrow\hept{\begin{cases}a^2\left(b-c\right)=0\\\frac{b}{2}=c-b\\\frac{23c}{54}=1-\frac{23c}{27}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=\frac{2}{3}c\\c=\frac{18}{23}\end{cases}}\)
Do \(ab+bc+ca\le1\) nên:
\(\frac{1}{a^2+1}\le\frac{1}{a^2+ab+bc+ca}=\frac{1}{\left(a+b\right)\left(a+c\right)}.\)
Chứng minh tương tự :\(\frac{1}{b^2+1}\le\frac{1}{\left(a+b\right)\left(b+c\right)};\frac{1}{c^2+1}\le\frac{1}{\left(a+c\right)\left(b+c\right)}.\)
Suy ra \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\)
\(\Leftrightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)(1)
Mặt khác áp dụng bất đẳng thức AM-GM ta có:
\(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\ge6\sqrt[6]{\left(abc\right)^6}=6abc\)
\(\Leftrightarrow9\left(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\right)+18abc\ge8\left(a^2b+ab^2+a^2c+ac^2+c^2b+cb^2\right)+24abc\)\(\Leftrightarrow9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right).\)(2)
Từ (1) và (2) suy ra:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{2\left(a+b+c\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\frac{9}{4\left(ab+bc+ca\right)}\)(3)
Thật vậy ta có; \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{ab.bc.ca}=9abc\)(BĐT AM-GM)
Lại có:\(\sqrt{3}\left(ab+bc+ca\right)\ge\sqrt{3}\sqrt{ab+bc+ca}.\left(ab+bc+ca\right)\)(Do :
\(ab+bc+ca\le1\Rightarrow1\ge\sqrt{ab+bc+ca}.\))
\(\ge3.\sqrt{3\sqrt[3]{a^2b^2c^2}}.3.\sqrt[3]{a^2b^2c^2}=9abc\)(BĐT AM-GM)
Vậy \(\left(a+b+c\right)\left(ab+bc+ca\right)+\sqrt{3}\left(ab+bc+ca\right)\ge9abc+9abc\)
\(\Rightarrow\left(a+b+c+\sqrt{3}\right)\left(ab+bc+ca\right)\ge18abc\)
\(\Rightarrow a+b+c+\sqrt{3}\ge\frac{18}{ab+bc+ca}\)(4)
Từ (3) và (4) ta có:
\(a+b+c+\sqrt{3}\ge8abc.\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)
Chứng minh BĐT quen thuộc \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\) Kết hợp với giả thiết ta có: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{a^2+ab+bc+ca}+\frac{1}{b^2+ab+bc+ca}+\frac{1}{c^2+ab+bc+ca}\)
\(=\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+a\right)\left(b+c\right)}+\frac{1}{\left(c+a\right)\left(c+b\right)}=\frac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\le\frac{2\left(a+b+c\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\frac{9}{4\left(ab+bc+ca\right)}\) Như vậy cần chứng minh
\(a+b+c+\sqrt{3}\ge8abc\cdot\frac{9}{4\left(ab+bc+ca\right)}=\frac{18\left(a+b+c\right)}{ab+bc+ca}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)+\sqrt{3}\left(ab+bc+ca\right)\ge18abc\)
Ta đã có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) nên cần chứng minh được
\(\sqrt{3}\left(ab+bc+ca\right)\ge9abc\Leftrightarrow ab+bc+ca\ge3\sqrt{3}abc\)
Theo BĐT AM-GM ta đi chứng minh một kết quả chặt hơn là:
\(3\sqrt[2]{a^2b^2c^2}\ge3\sqrt{3}abc\Leftrightarrow abc\le\frac{1}{3\sqrt{3}}\)
Và đây là điều luôn đúng vì \(abc=\sqrt{ab\cdot bc\cdot ca}\le\sqrt{\left(\frac{ab+bc+ca}{3}\right)^3}\le\sqrt{\frac{1}{27}}=\frac{1}{3\sqrt{3}}\)
Ta được đpcm. Dấu \("="\Leftrightarrow a=b=c=\frac{\sqrt{3}}{3}\)
hiển nhiên \(a,b\ge c\) nên không mất tính tổng quát, ta giả sử \(a\ge b\ge c\)
Ta co:
\(\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow\)\(ab\ge a+b-1\)
\(bc\ge0\)
\(c\left(a-b\right)\ge0\)\(\Leftrightarrow\)\(ca\ge bc\ge c\)
\(\frac{9}{ab+bc+ca}-2\le\frac{9}{a+b-1+c}-2=\frac{5}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}\left(a;b;c\right)=\left(2;1;0\right)\\\left(a;b;c\right)=\left(1;2;0\right)\end{cases}}\)