K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Làm trước câu 3:

Ta có:

\(\frac{1x}{a}+\frac{y}{b}=\frac{x+y}{c}\)

\(\Leftrightarrow1bcx+acy=abx+aby\)

\(\Leftrightarrow1x\left(bc-ab\right)=y\left(ab-ac\right)\)

\(\Leftrightarrow\frac{1x}{y}=\frac{a\left(b-c\right)}{b\left(C-a\right)}\)

Ta cần chứng minh

\(1xa^2+yb^2=\left(x+y\right)c^2\)

\(\Leftrightarrow1x\left(a^2-c^2\right)=y\left(c^2-b^2\right)\)

\(\Leftrightarrow\frac{1x}{y}=\frac{\left(c-b\right)\left(c+b\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a\left(b-c\right)}{b\left(c-a\right)}\)

Vậy ta có ĐPCM

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

29 tháng 12 2017

Ta có: \(bc(y-z)^{2}+ac(x-z)^{2}+ab(x-y)^{2}\)

\(=(abx^2+cax^2)+(bcy^2+aby^2)+(caz^2+bcz^2)-2(ax.by+by.cz+cz.ax)\)

\(=ax^2(2017-a)+by^2(2017-b)+cz^2(2017-c)-2(ax.by+by.cz+cz.ax)\)

\(=2017(ax^2+by^2+cz^2)-[a^2x^2+b^2y^2+c^2z^2+2(ax.by+by.cz+cz.ax)]\)

\(=2017(ax^2+by^2+cz^2)-(ax+by+cz)^2\)

\(=2017(ax^2+by^2+cz^2)\)

Vậy \(P=\dfrac{1}{2017}\)

29 tháng 12 2017

bài của bạn Phạm Quốc Cường phải là 2007 chứ không phải 2017

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

14 tháng 3 2017

Bất đẳng thức Bunyakovsky \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)  \(\Leftrightarrow\)  \(\left(ad-bc\right)^2\ge0\)

Dấu  \(''=''\)  xảy ra khi  \(\frac{a}{c}=\frac{b}{d}\)

\(----------------\)

\(y^2+yz+z^2=\frac{3}{4}\left(y+z\right)^2+\frac{1}{4}\left(y-z\right)^2\ge\frac{3}{4}\left(y-z\right)^2\)  với mọi  \(y,z\in R\)

nên từ giả thiết đã cho kết hợp với bất đẳng thức đã chứng minh ở trên, suy ra:ư

\(1\ge\frac{3}{2}x^2+\frac{3}{4}\left(y+z\right)^2\)  \(\left(1\right)\)

Lại có:   \(\left(2+4\right)\left[\frac{3}{2}x^2+\frac{3}{4}\left(y+z\right)^2\right]\ge\left[\sqrt{3}\left(x+y+z\right)\right]^2\)

suy ra  \(\frac{3}{2}x^2+\frac{3}{4}\left(y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{2}\)  \(\left(2\right)\)

Từ  \(\left(1\right);\left(2\right)\)  ta thu đc  \(1\ge\frac{\left(x+y+z\right)^2}{2}\)  tức là  \(x+y+z\le\sqrt{2}\)

(*Bạn tự tìm điểm rơi nhé!)

14 tháng 3 2017

C nha bạn

4 tháng 6 2018

Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y;\sqrt[4]{c}=z\)

Cần chứng minh

\(\sqrt[4]{a}+\sqrt[4]{b}>\sqrt[4]{c}=\sqrt[4]{a+b}\)

\(\Rightarrow\left(x^3+y^3\right)^4>\left(x^4+y^4\right)^3\)

Rôi phân phối ra là thấy

4 tháng 6 2018

E ko hiểu