K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Đặt \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{z}{c}\) = k \(\Rightarrow\)x=ak;y=bk ; z=ck.

(x+y+z)2=(ak+bk+ ck)2=[k(a+b+c)]2=

k2(a+b+c)2=k2(vì a+b+c=1nên(a+b+c)2=1)(1)

x2+y2+z2=(ka)2+(kb)2+(kc)2=k2a2+k2b2+k2b2

=k2(a2+b2+c2)=k2 (vì a2+b2+c2=1) (2)

Từ (1) và (2), \(\Rightarrow\) (x+y+z)2=x2+y2+z2=k2

4 tháng 4 2017

toàn làm bài dễ vậy ngon làm bài này đi

2 tháng 4 2017

Áp dụng tc dãy tỉ số bằng nhau ta có:\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}=x+y+z\)\(\Rightarrow\dfrac{x^2}{a^2}=\left(x+y+z\right)^2\left(1\right)\)

Từ \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}=x^2+y^2+z^2\)

\(\Rightarrow\dfrac{x^2}{a^2}=x^2+y^2+z^z\left(2\right)\)

Từ (1),(2)\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)

2 tháng 4 2017

+Ta có :\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)\(=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)(vì a + b+c =1)

=>\(\left(\dfrac{x^2}{a^2}\right)=\left(\dfrac{y^2}{b^2}\right)=\left(\dfrac{z^2}{c^2}\right)=\dfrac{\left(x+y+z\right)2}{1}\)(1)

+Vì \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

=>\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}\)(vì a2 + b2 + c2 =1 ) (2)

Từ (1) và(2)=> ( x + y + z )2 = x2 + y2 + z2.

Vậy.........

14 tháng 8 2017

Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)

Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)

=>y+z=\(\dfrac{1}{2}\)-x

Tương tự, ta có được:

x+z=\(\dfrac{1}{2}-y\)

x+y=\(\dfrac{1}{2}-z\)

Thay các kết quả vừa tìm được, ta có:

\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)

=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)

Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:

A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)

=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)

=>A=1009+0

=>A=1009

Vậy giá trị của biểu thức A là 1009

14 tháng 8 2017

Thanks crush nka !!

a: \(=-a^5\cdot b^2\cdot xy^2z^{n-1}\cdot b^3c\cdot x^4z^{7-n}=-a^5b^5c\cdot x^5y^2z^6\)

Hệ số là \(-a^5b^5c\)

Bậc là 13

b: \(=\dfrac{9}{10}a^3x^2y\cdot\dfrac{5}{3}ax^5y^2z=\dfrac{3}{2}a^4x^7y^3z\)

Hệ số là \(\dfrac{3}{2}a^4\)

Bậc là 11

26 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{x}{x+y+z}\\b=\dfrac{y}{x+y+z}\\c=\dfrac{z}{x+y+z}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2}{\left(x+y+z\right)^2}+\dfrac{y^2}{\left(x+y+z\right)^2}+\dfrac{z^2}{\left(x+y+z\right)^2}=1\)

\(\Rightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2-2\left(xy+yz+zx\right)\)

\(\Rightarrow2\left(xy+yz+zx\right)=0\)

\(\Rightarrow xy+yz+zx=0\) (đpcm)

26 tháng 8 2018

ai giúp mình với mình đang cần gấp

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)