Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
Áp dụng BĐT Bunhiacopxki ta có:
\(1=(a^2+b^2)(m^2+n^2)\geq (am+bn)^2\Rightarrow -1\leq am+bn\leq 1\)
Dấu bằng xảy ra khi \(\frac{a}{m}=\frac{b}{n}\) . Kết hợp với \(a^2+b^2=m^2+n^2=1\)
\(\Rightarrow \) dấu bằng xảy ra khi \(a=\pm m;b=\pm n\)
Bài 2)
Ta thấy:
\((ac-bd)^2\geq 0\Rightarrow a^2c^2+b^2d^2\geq 2abcd\Rightarrow (ac+bd)^2\geq 4abcd\)
\(\Leftrightarrow 4\geq 4cd\rightarrow cd\leq 1\Rightarrow 1-cd\geq 0\) (đpcm)
Dấu bằng xảy ra khi \(ac=bd=\pm 1\) và \(cd=1\) ....
Bài 3)
Vế đầu:
\(\Leftrightarrow ab+bc+ac\leq a^2+b^2+c^2\)
Nhân $2$ và chuyển vế \(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\)
BĐT trên luôn đúng nên BĐT đầu tiên cũng đúng.
Vế sau:
\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)
Do đó BĐT sau cũng luôn đúng với mọi số thực $a,b,c$
Dấu bằng xảy ra khi $a=b=c$
\(\left\{{}\begin{matrix}m^2+n^2=1\\a^2+b^2=1\end{matrix}\right.\) \(\Leftrightarrow\left(a^2+b^2\right)\left(m^2+n^2\right)=\left(am\right)^2+\left(an\right)^2+\left(bm\right)^2+\left(bn\right)^2=1\)\(\Leftrightarrow\left(am+bn\right)^2-\left[\left(ambn-\left(an\right)^2\right)+\left(ambn-\left(bm\right)^2\right)\right]=1\)\(\Leftrightarrow\left(am+bn\right)^2+\left[an\left(bm-an\right)\right]+\left[bm\left(an-bm\right)\right]=1\)
\(\Leftrightarrow\left(am+bn\right)^2-\left(bm-an\right)\left(an-bm\right)=1\)
\(\Leftrightarrow\left(am+bn\right)^2+\left(an-bm\right)^2=1\\ \)
\(\left(an-bm\right)^2\ge0\forall_{a,b,m,n}\Rightarrow\left(am+bn\right)^2\le1\)
\(\Rightarrow-1\le\left(am+bn\right)\le1\Rightarrow dpcm\)
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
ta có: \(a^2+b^2+c^2=1\Rightarrow-1\le|a|\le1.\),tương tự với b và c
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)\(\Leftrightarrow abc+\left(a+b+c+ab+ac+bc+1\right)\ge0.\left(1\right)\)
Ta thấy \(\left(a+b+c+1\right)^2=a^2+b^2+c^2+2ab+2bc+2ac+2a+2b+2c+1.\)
\(=2+2a+2b+2c+2ab+2bc+2ac\)
\(=2\left(1+a+b+c+ab+ac+bc\right)\ge0\)
\(\Rightarrow1+a+b+c+ab+bc+ac\ge0\left(2\right)\)
Cộng vế theo vế của (1) và (2) Suy ra \(abc+2\left(1+a+b+c+ab+ac+bc\right)\ge0\left(đpcm\right)\)
Thay \(4=4\left(ab+ac+bc\right)\) vì \(ab+ac+bc=1\)=> \(10a^2+10b^2+c^2\ge4\left(ab+ac+bc\right)\)\(\Leftrightarrow20a^2+20b^2+2c^2-8ac-8bc-8ac\ge0\Leftrightarrow\left(16a^2-8ac+c^2\right)+\left(16b^2-8bc+c^2\right)\)
\(+\left(4a^2-8ab+4b^2\right)\)\(\Leftrightarrow\left(4a-c\right)^2+\left(4b-c\right)^2+\left(2a-2b\right)^2\ge0\)vì bất đẳng thức cuối luôn đúng nên bất đẳng thức đầu đúng ( đpcm ). Dấu "=" xảy ra khi 4a=4b=c
Nội suy Sửa đề làm cho bạn
Bài 1:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{2}+\dfrac{\left(c-a\right)^2}{2009}\)Nhân 2 chuyển Vế
\(2a^2+2b^2+2c^2-2ab-2bc-2ac-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2\left(c-a\right)^2}{2009}\right]\ge0\)Ghép Bình phướng
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2.\left(c-a\right)^2}{2009}\right]\ge0\)Ghép nhân tử
\(\left[\left(a-b\right)^2\left(1-\dfrac{1}{13}\right)+\left(b-c\right)^2\left(1-\dfrac{1}{3}\right)+\left(c-a\right)^2\left(1-\dfrac{2}{2009}\right)\right]\ge0\)
Thu gọn có thể không cần
\(\left[\left(a-b\right)^2\left(\dfrac{12}{13}\right)+\left(b-c\right)^2\left(\dfrac{2}{3}\right)+\left(c-a\right)^2\left(\dfrac{207}{2009}\right)\right]\ge0\)VT là tổng 3 số không âm
Đẳng thức khi a=b=c
=> dpcm