K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 2 2021

Do \(a,b,c\)có vai trò như nhau nên ta giả sử \(a\ge b\ge c\)

\(3=a+b+c\le a+a+a\Rightarrow a\ge1\).

\(a^2+b^2+c^2=5\Rightarrow a^2\le5\Rightarrow a\in\left\{1,2\right\}\).

Với \(a=2\)\(\hept{\begin{cases}b+c=1\\b^2+c^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=0\end{cases}}\).

Với \(a=1\Rightarrow b=c=1\)thử vào phương trình \(a^2+b^2+c^2=5\)không thỏa mãn. 

Vậy \(A=\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)=\left(2^2+2\right)\left(1^2+2\right)\left(0^2+2\right)=36=6^2\)là bình phương của một số nguyên. 

14 tháng 12 2016

ko biết nhưng hãy tích dùng hộ mình đi

14 tháng 12 2016

Mọi người ơi giúp em với huhu :((((

13 tháng 2 2017

wow, axit nhân tạo giỏi quá

19 tháng 8 2016

\(a+b+c=0\)

\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

THAY \(a+b=-c;a+c=-b;b+c=-a\)VÀO M;N;P TA CÓ:
\(M=a.\left(-c\right).\left(-b\right)=a.b.c\)(1)

\(N=b.\left(-a\right).\left(-c\right)=a.b.c\)(2)

\(P=c.\left(-b\right).\left(-a\right)=a.b.c\)(3)
Từ (1) ; (2) ; (3) Ta có 

\(M=N=P\left(=a.b.c\right)\)(đpcm)