K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

\(\Delta_1=b^2-4c\) ; \(\Delta_2=c^2-4b\)

\(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow bc=2\left(b+c\right)\)

Do đó:

\(\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)

\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm

\(\Rightarrow\) Ít nhất một trong 2 phương trình trên có nghiệm

9 tháng 5 2018

Ta có:        \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\)

\(\Rightarrow\frac{m+n}{mn}=\frac{1}{2}\)

\(\Leftrightarrow mn=2\left(m+n\right)\)

\(\Rightarrow2mn=4\left(m+n\right)\)

Từ Phương trình 1 lập \(\Delta_1\)

\(\Delta_1=m^2-4n\)

Phương trình 2 có \(\Delta_2=n^2-4m\)

lấy \(\Delta_1+\Delta_2\)

\(=m^2+n^2-4m-4n\)

\(=m^2-4\left(m+n\right)+n^2\)

\(=m^2-2mn+n^2\)

\(=\left(m-n\right)^2\ge0\)

vậy tồn tại delta1 hoặc delta 2 dương nên một trong 2 phương trình đã cho có ít nhất 1 phương trình có nghiệm

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

31 tháng 3 2017

Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.

\(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.

Vậy đề bài sai.

31 tháng 3 2017

Nếu xét các trường hợp khác thì sao alibaba ??

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0