Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P: “tam giác ABC vuông tại A”
Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”
+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”
+) Từ định lí Pytago, ta có:
Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)
Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.
Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.
+) Mệnh đề \(P \Rightarrow Q\) là: “Vì tam giác ABC đều nên tam giác ABC cân và có một góc bằng \({60^o}\)”.
+) Mệnh đề \(Q \Rightarrow P\) là: “Tam giác ABC cân và có một góc bằng \({60^o}\) suy ra tam giác ABC đều”.
Dễ thấy cả hai mệnh đề trên đều đúng.
+) Mệnh đề tương đương: (dùng một trong các cách sau:)
“Tam giác ABC đều tương đương tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều là điều kiện cần và đủ để có tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều khi và chỉ khi tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều nếu và chỉ nếu tam giác ABC cân và có một góc bằng \({60^o}\)”
a) \(\left(P\Rightarrow Q\right)\) : " Nếu AB = AC thì tam giác ABC cân"
Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)" Nếu tam giác ABC cân thì AB = AC"
b) \(\left(P\Rightarrow Q\right)\) : đúng, \(\left(Q\Rightarrow P\right):\)sai
a) Mệnh đề \(P \Rightarrow Q\): “Nếu hai tam giác ABC và A’B’C’ bằng nhau thì chúng có diện tích bằng nhau”
b) Mệnh đề \(P \Rightarrow Q\) đúng nên nó là một định lí. Hai cách phát biểu định lí là:
Hai tam giác ABC và A’B’C’ bằng nhau là điều kiện đủ để có diện tích bằng nhau.
Hai tam giác ABC và A’B’C’ có diện tích bằng nhau là điều kiện cần để chúng bằng nhau.
a)
+) Mệnh đề R: “Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)” có dạng \(P \Rightarrow Q\), với
P: “ABC là tam giác đều” và Q: “Tam giác ABC có hai góc bằng \({60^o}\)”
Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay R đúng.
+) Mệnh đề T: “Nếu \(a = 2\) thì \({a^2} - 4 = 0\)” có dạng \(P \Rightarrow Q\), với:
P: “\(a = 2\)” và Q: “\({a^2} - 4 = 0\)”.
Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay T đúng.
b) Mệnh đề \(Q \Rightarrow P\) của hai mệnh đề trên là:
“Nếu ABC có hai góc bằng \({60^o}\) thì nó là tam giác đều”, đúng.
“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)” sai (vì thiếu nghiệm \(a = - 2\)).
a) Nếu ABC là một tam giác cân thì ABC là tam giác đều
Đây là mệnh đề sai
b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều
Đây là mệnh đề đúng
P ⇒ Q: “ Nếu tam giác ABC có hai góc bằng 60o thì ABC là một tam giác đều”
Giả thiết: “Tam giác ABC có hai góc bằng 60o ”
Kết luận: “ABC là một tam giác đều”
Phát biểu lại định lí này dưới dạng điều kiện cần: “ABC là một tam giác đều là điều kiện cần để tam giác ABC có hai góc bằng 60o”
Phát biểu lại định lí này dưới dạng điều kiện đủ : “Tam giác ABC có hai góc bằng 60o là điều kiện đủ để ABC là tam giác đều”
Phát biểu: “Tam giác ABC là tam giác vuông khi và chỉ khi tam giác ABC có một góc bằng tổng hai góc còn lại”.
Mệnh đề này đúng.
Thật vậy, giả sử ba góc của tam giác ABC lần lượt là \(x,y,z\;\) (đơn vị \({^o}\)).
Ta có: tam giác ABC có một góc bằng tổng hai góc còn lại.
Không mất tính tổng quát, giả sử: \(x=y+z\)
\(\Leftrightarrow 2x ={180^o} \) (vì \(x + y + z = {180^o}\)).
\(\Leftrightarrow x ={90^o} \)
Vậy tam giác ABC vuông.
a) "Nếu ABC là một tam giác đều thì AB = BC = CA", cả hai mệnh đề đều đúng
b) "Nếu \(\widehat{C}>\widehat{A}\) thì AB > BC". Cả hai mệnh đề đều đúng
c) "Nếu ABC là một tam giác vuông thì \(\widehat{A}=90^0\)"
Nếu tam giác ABC vuông tại B (hoặc C) thì mệnh đề đảo sai
a)
\(P \Rightarrow Q\): “Nếu tam giác ABC là tam giác vuông tại A thì các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”
Mệnh đề này đúng.
\(Q \Rightarrow P\): “Nếu tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\) thì tam giác ABC vuông tại A”
Mệnh đề này đúng.
\(P \Leftrightarrow Q\): “Tam giác ABC là tam giác vuông tại A khi và chỉ khi các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”
Mệnh đề này đúng do các mệnh đề \(P \Rightarrow Q,Q \Rightarrow P\)đều đúng.
\(\overline P \Rightarrow \overline Q \): “Nếu tam giác ABC không là tam giác vuông tại A thì các cạnh của nó thỏa mãn \(A{B^2} + A{C^2} \ne B{C^2}\)”
Mệnh đề này đúng.
b) Mệnh đề \(P \Rightarrow Q\) có thể phát biểu là:
“Tam giác ABC là tam giác vuông tại A là điều kiện đủ để tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\)”
“Tam giác ABC có các cạnh thỏa mãn \(A{B^2} + A{C^2} = B{C^2}\) là điều kiện cần để tam giác ABC vuông tại A”
c)
X là tập hợp các tam giác ABC vuông tại A.
Y là tập hợp các tam giác ABC có trung tuyến \(AM = \frac{1}{2}BC\).
Dễ thấy: \(X \subset Y\) do các tam giác ABC vuông thì đều có trung tuyến \(AM = \frac{1}{2}BC\).
Ta chứng minh: Nếu tam giác ABC có trung tuyến \(AM = \frac{1}{2}BC\) thì tam giác ABC vuông tại A.
Thật vậy, \(BM = MC = AM = \frac{1}{2}BC\) suy ra M là tâm đường tròn đường kính BC, ngoại tiếp tam giác ABC.
\( \Rightarrow \widehat {BAC} = {90^ \circ }\) (góc nội tiếp chắn nửa đường tròn)
Vậy tam giác ABC là tam giác vuông.
Do đó \(Y \subset X\)
Vậy \(X = Y\)