K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2023

a) Phương trình hoành độ giao điểm của d₁ và d₂

x + 2 = 5 - 2x

⇔ x + 2x = 5 - 2

⇔ 3x = 3

⇔ x = 1

Thay x = 1 vào d₁ ta có:

y = 1 + 2 = 3

⇒ Giao điểm của d₁ và d₂ là A(1; 3)

Thay tọa độ điểm A vào d₃ ta có:

VT = 3

VP = 3.1 = 3

⇒ VT = VP

Hay A ∈ d₃

Vậy d₁, d₂ và d₃ đồng quy

b) Thay tọa độ điểm A(1; 3) vào d₄ ta có:

m.1 + m - 5 = 3

⇔ 2m - 5 = 3

⇔ 2m = 3 + 5

⇔ 2m = 8

⇔ m = 8 : 2

⇔ m = 4

Vậy m = 4 thì d₁, d₂ và d₄ đồng quy

17 tháng 8 2019

AK//BC(gt)

BA//CK(gt)

\(\Rightarrow\)ABCK là hbh

CMTT \(\Rightarrow\)ACBM là hbh

\(\Rightarrow\)MA=AK(=BC)

\(\Rightarrow\) NA là đ trung tuyến

CMTT \(\Rightarrow\)KB là đ trung tuyến\(\Rightarrow\)MC là đ trung tuyến

\(\Rightarrow\)NA, KB, MC đồng quy tại 1 điểm

17 tháng 8 2019

thanks

15 tháng 2 2017

O P P P d d

Giải

P1 đối xứng với P qua d1, ta có:

OP1 = OP (1)

góc O1 = góc O2 (2)

P2 đối xứng với P1 qua d2, ta có:

OP2 = OP1 (3)

góc O3 = góc O4 (4)

Từ (2) và (4) ta chứng minh được P2, O, P thẳng hàng (5)

Từ (1) và (2) ta chứng minh được OP2 = OP (6)

Từ (5) và (6) ta suy ra P và P2 đối xứng nhau qua O

17 tháng 7 2017

mk chỉ cần câu c thôi

17 tháng 7 2017

\(x^2+\dfrac{1}{2}x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)

16 tháng 9 2016

Đề đúng phải là chứng minh hai điểm P và P2 đối xứng với nhau qua O nhé, còn P1 và P2 đối xứng nhau qua trục d2 

P P1 P2 O d1 d2 A B

Gọi A và B lần lượt là các điểm mà P đối xứng với P1 qua qua d1 , P1 đối xứng P2 qua d2

Để chứng minh P và P2 đối xứng với nhau qua O , ta chỉ cần chứng minh OP = OP2 và P,O,P2 thẳng hàng.

Xét hai tam giác vuông : Tam giác PAO và tam giác OBP2 có OB = PA (Vì PA = AP1 , AOP1B là hình chữ nhật)

góc POA = góc OP2B (đồng vị) => tam giác OBP2 = tam giác PAO => OP = OP2 (1)

góc OP2B = góc PAO mà góc OP2B + góc BOP2 = 90 độ => góc PAO + góc BOP2 = 90 độ

=> Góc POP2 = góc BOP2 + góc AOB + góc PAO = 90 độ + 90 độ = 180 độ

=> Ba điểm P,O,P2 thẳng hàng (2)

Từ (1) và (2) ta có điều phải chứng minh.

16 tháng 9 2016

d1 d2 P P1 P2 O 2 1 M N 3

MO vuông góc d1 ,P1P vuông góc d1 (vì P1,P đối xứng qua d1) nên MO // P1P => góc O1 = góc P (2 góc đồng vị)

Tam giác ONP vuông tại N nên góc O2 + góc P = 900 => góc O2 + góc O1 = 900 mà góc O3 = 900 (d1 vuông góc d2

=> góc P2OP = góc O1 + góc O2 + góc O3 = 900 + 900 = 1800 => P2,O,P thẳng hàng (1)

OP1 = OP2 (P1,P2 đối xứng qua d2 hay d2 là trung trực P1P2) ; OP1 = OP (P,P1 đối xứng qua d1 hay d1 là trung trực PP1)

=> OP2 = OP (2) .Từ (1) và (2),ta có O là trung điểm của PP2 hay P1,P2 đối xứng qua O.

1 tháng 3 2017

A B C D O M N

c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)

\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)

Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)

d) Áp dụng hệ quả định lí Ta-lét,ta có :

\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)

\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)

\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)

Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)

Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)

P/S : Bạn xem lại đề để có thể xác định E,F nhé

1 tháng 3 2017

chịu rùi tớ không biết !!!

Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng...
Đọc tiếp

Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, Bsao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM 

Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng NP, MQ cắt BC tại E và F. CM IE = IF.

Bài 3: Qua điểm M tùy ý trên đáy lớn AB của hình thang ABCD ta kẻ các đường thẳng // với 2 đường chéo AC và BD, Các đường // này cắt BC, AD lần lượt ại E, F tương ứng. Đoạn thẳng EF cắt AC, BD tương ứng tại I và J.

1) CMR nếu H là TĐ của IJ thì H cũng là TĐ của EF

2) Trong trường hợp AB = 2CD hãy chỉ ra vị trí của M trên AB sao cho EJ = JI = IF

Giải giúp em :) Cảm ơn nhiều <3

0