Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(x\right)=2+5x^2-3x^2+4x^2-2x-x^3+6x^5\)
\(P=6x^5-x^3+\left(5x^2-3x^2+4x^2\right)-2x+2\)
\(P=6x^5-x^2+6x^2-2x+2\)
b) Hệ số khác 0 của đa thức P(x): 6; -1; 6; -2; 2
a) x7-x4+2x3-3x4-x2+x7-x+5-x3
= 5-x-x2+(2x3-x3)-(x4+3x4)+(x7+x7)
= 5-x-x2+x3-4x4+2x7
Hệ số cao nhất là 2. Hệ số tự do là 5
b) 2x2-3x4-3x2-4x5-\(\dfrac{1}{2}\)x-x2+1
= 1-\(\dfrac{1}{2}\)x+(2x2-3x2-x2)-3x4-4x5
= 1-\(\dfrac{1}{2}\)x-2x2-3x4-4x5
Hệ số cao nhất là -4. Hệ số tự do là 1
Tổng các hệ số của các hạng tử của đa thức là:
f(x)= 11994.(-1)1995=-1
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a: \(P=\dfrac{-2}{3}\cdot\dfrac{1}{2}x^3y^2\cdot x^2y^5=\dfrac{-1}{3}x^5y^7\)
Hệ số là -1/3
Phần biến là \(x^5;y^7\)
b: Khi x=-1 và y=1 thì \(P=\dfrac{-1}{3}\cdot\left(-1\right)^5\cdot1^7=\dfrac{1}{3}\)
a, \(P=\left(\frac{-2}{3}x^3y^2\right)\left(\frac{1}{2}x^2y^5\right)\)
\(P=\left(\frac{-2}{3}.\frac{1}{2}\right)\left(x^3.x^2\right)\left(y^2.y^5\right)\)
\(P=\frac{-1}{3}x^5y^7\)
b, Giá trị của \(P=\frac{-1}{3}x^5y^7\) tại: \(x=-1;y=1\)
\(P=\frac{-1}{3}.\left(-1\right)^5.1^7\)
\(P=\frac{1}{3}\)
Vậy....
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
`a,`
`A=2x^6+(-5x^3)+(-3x^6)+x^3+(-3/5x^2)+(-1/2x^2)+8+(-3x)`
`A=2x^6-5x^3-3x^6+x^3-3/5x^2-1/2x^2+8-3x`
`A=(2x^6-3x^6)+(-5x^3+x^3)+(-3/5x^2-1/2x^2)-3x+8`
`A=-x^6-4x^3-1,1x^2-3x+8`
`b,`
Hệ số cao nhất của đa thức: `-1`
Hệ số tự do: `8`
Hệ số của `x^2: -1,1 (-11/10)`
a: A=2x^6-3x^6-5x^3+x^3-3/5x^2-1/2x^2-3x+8
=-x^6-4x^3-11/10x^2-3x+8
b: Hệ số cao nhất là -1
Hệ số tự do là 8
Hệ số của x^2 là -11/10