K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ta có:

\(f\left(x\right)=15-4x^3+2x-x^3+x^2-10\)

\(=-5x^3+x^2+2x+5\)

*\(g\left(x\right)=4x^3+6x^2-5x+5-9x^3+7x\)

\(=-5x^3+6x^2+2x+5\)

a) \(f\left(x\right)-g\left(x\right)=\)\(-5x^3+x^2+2x+5-\left(-5x^3+6x^2+2x+5\right)\)

\(=x^2-6x^2\)

\(=-5x^2\)

b) Ta có: \(f\left(x\right)-g\left(x\right)=-5x^2\)(từ câu a)

\(\Rightarrow-5x^2=-125\)

\(\Rightarrow x^2=25\)\(\Rightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)

12 tháng 4 2022

\(f\left(x\right)=x^3-2x^2+3x+2\)

\(g\left(x\right)=-x^3-3x^2+2\)

12 tháng 4 2022

\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)

\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)

\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)

1 tháng 5 2023

F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)

F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)

F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)

F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7

G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12

G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12

G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12

G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12

b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)

F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12

F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)

F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5

a: f(x)=-2x^7+4x^3-2x^2+3

g(x)=-5x^7-2x^3+x

b: f(x)+g(x)

=-2x^7+4x^3-2x^2+3-5x^7-2x^3+x

=-7x^7+2x^3-2x^2+x+3

f(x)-g(x)

=-2x^7+4x^3-2x^2+3+5x^7+2x^3-x

=3x^7+6x^3-2x^2-x+3

c: f(0)=0+0+0+3=3

=>x=0 ko là nghiệm của f(x)

g(0)=0+0+0=0

=>x=0 là nghiệm của g(x)

1 tháng 5 2017

bài 3:

a) f(x)= x2+2x4-2x3+x2+5x4+4x3-x+5

= (2x4+5x4)+(4x3-2x3)+(x2+x2)-x+5

= 7x4+2x3+2x2-x+5

g(x)= -2x2+8x4+x-x4-3x3+3x2+5+4x3

=(8x4-x4)+(4x3-3x3)+(3x2-2x2)+x+5

= 7x4+x3+x2+x+5

b) h(x)=f(x)-g(x)

=(7x4+2x3+2x2-x+5)-(7x4+x3+x2+x+5)

=7x4+2x3+2x2-x+5-7x4-x3-x2-x-5

=(7x4-7x4)+(2x3-x3)+(2x2-x2)-(x+x)+(5-5)

=x3+x2-2x

Bài 4:

a) f(x)=5x4+x3-x+11+x4-5x3

=(5x4+x4)+(x3-5x3)-x+11

=6x4-4x3-x+11

g(x)=2x3+3x4+9-4x3+2x4-x

=(3x4+2x4)+(2x3-4x3)-x+9

=5x4-2x3-x+9

b) h(x)=f(x)-g(x)

=(6x4-4x3-x+11)-(5x4-2x3-x+9)

=6x4-4x3-x+11-5x4-2x3-x+9

=(6x4-5x4)-(4x3+2x3)-(x+x)+(11+9)

= x4-6x3-2x+20

c) Với x = -2

Ta có: h(-2)=(-2)4-6.(-2)3-2.(-2)+20=88\(\ne\)0

Vậy x = -2 không phải là nghiệm của đa thức h(x)

đúng thì tặng 1 tick cho mk nk các pn!!!

2 tháng 5 2017

giải câu c ở bài 3 với