Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 nghiệm của P(x) lần lượt là x1,x2,x3
\(\Rightarrow P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)
Vì P(Q(x)) =0 vô nghiệm nên
\(\left(x^2+2016x+2017-x_1\right)\left(x^2+2016x+2017-x_2\right)\left(x^2+2016x+2017-x_3\right)\) (1) vô nghiệm
Để (1) vô nghiệm thì \(\left(x^2+2016x+2017-x_1\right),\left(x^2+2016x+2017-x_2\right),\left(x^2+2016x+2017-x_3\right)\) vô nghiệm
\(\Rightarrow\Delta< 0\Leftrightarrow2016^2< 4\left(2017-x_i\right)\Rightarrow\left(2017-x_i\right)\ge1008^2\) với i=1,2,3
\(\Rightarrow P\left(2017\right)>1008^6\)
+) Ta có: P(x) = 0 có 3 nghiệm phân biệt
=> Gọi 3 nghiệm đó là m; n ; p.
=> P(x) = ( x - m ) ( x - p ) (x - n)
=> P(Q(x)) = ( x^2 + 2016x + 2017 -m )( x^2 + 2016x + 2017 -n )( x^2 + 2016x + 2017 - p )
Vì P(Q(x)) =0 vô nghiệm nên: x^2 + 2016x + 2017 - m = 0 ;x^2 + 2016x + 2017 - m = 0; x^2 + 2016x + 2017 - m = 0 đều vô nghiệm
=> \(\Delta_m=1008^2-\left(2017-m\right)< 0\); \(\Delta_n=1008^2-\left(2017-n\right)< 0\); \(\Delta_p=1008^2-\left(2017-p\right)< 0\)
=> \(2017-m>1008^2;2017-n>1008^2;2017-p>1008^2\)
=> P(2017) = ( 2017 - m) (2017 -n ) (2017 - p) > \(1008^2.1008^2.1008^2=1008^6\)
Vậy ta có điều phải chứng minh.
Ý tưởng như sau:
\(x^2+ax+1=0\) và \(x^2+bx+c=0\) là 2 pt có nghiệm chung nên hệ pt sau có nghiệm (nhận xét quan trọng):
\(\hept{\begin{cases}x^2+ax+1=0\\x^2+bx+c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)x=c-1\\x^2+ax+1=0\end{cases}}\)
Do \(a\ne b\) nên thay \(x=\frac{c-1}{a-b}\) xuống pt dưới được: \(\left(\frac{c-1}{a-b}\right)^2+\frac{a\left(c-1\right)}{a-b}+1=0\)
Hay \(\left(c-1\right)^2+a\left(c-1\right)\left(a-b\right)+\left(a-b\right)^2=0\)
-----
\(x^2+x+a=0\) và \(x^2+cx+b=0\) có nghiệm chung thì hệ pt sau có nghiệm:
\(\hept{\begin{cases}x^2+x+a=0\\x^2+cx+b=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(c-1\right)x=a-b\\x^2+x+a=0\end{cases}}}\)
Do \(a\ne b\) nên \(c\ne1\), thay \(x=\frac{a-b}{c-1}\) xuống pt dưới được:
\(\left(\frac{a-b}{c-1}\right)^2+\frac{a-b}{c-1}+a=0\) hay \(\left(a-b\right)^2+\left(a-b\right)\left(c-1\right)+a\left(c-1\right)^2=0\)
-----
Đặt \(x=a-b,y=c-1\)
Ta có hệ: \(\hept{\begin{cases}x^2+axy+y^2=0\\x^2+xy+ay^2=0\end{cases}\Rightarrow\left(a-1\right)xy=\left(a-1\right)y^2}\)
Nhớ rằng \(a=1\) không xảy ra vì khi đó \(x^2+ax+1=0\) vô nghiệm.
Vậy \(a\ne1\), do \(y\ne0\) nên \(x=y\). Tức là \(a-b=c-1\).
Tới đây quay lại mấy cái nghiệm chung sẽ thấy các nghiệm chung đều là \(1\).
Mà như vậy thì \(b+c=-1,a=-2\) nên \(a+b+c=-4\)
Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có
\(ax_1^2+bx_1+c=0\)
chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)
ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)
suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)
Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)
áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :
\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)
Cần cm BĐT: với mọi a, b, c ta luôn có \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Ta có \(\Delta_1=a^2-4\) ; \(\Delta_2=b^2-4\) ; \(\Delta_3=c^2-4\)
Do đó \(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\ge\frac{\left(a+b+c\right)^2}{3}-12=\frac{6^2}{3}-12=0\)
Vậy \(\Delta_1+\Delta_2+\Delta_3\ge0\) nên ít nhất phải có \(\Delta_1\ge0\) hoặc \(\Delta_2\ge0\) hoặc \(\Delta_3\ge0\)
(vì nếu cả 3 cái cùng < 0 thì tổng của chúng sẽ < 0)
Điều này chứng tỏ phải có ít nhất 1 pt có nghiệm.
câu hỏi rất hay
cố lên nhé
cố gắng làm nhé sau khi tự làm bạn sẽ lên trình độ đấy
cố lên