Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(x) - g(x) - h(x) = (x3-2x2+3x+1)-(x3+x-1)-(2x2-1)
=x3- 2x2+3x + 1 -x3-x+1 - 2x2+1
= ( x3-x3)+(-2x2-2x2) + (3x-x)+(1 + 1 + 1 )
= -4x2 + 2x +3
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
a)+)\(f\left(x\right)=3x^4-5x^3-x^2+1007\)
\(\Rightarrow f\left(x\right)=\left(3x^2-5x-1\right)x^2+1007\)
+)\(g\left(x\right)=2x^4+3x^3-1007\)
\(\Rightarrow g\left(x\right)=\left(2x^2+3x\right)x^2-1007\)
\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)x^2+1007\right]-\left[\left(2x^2+3x\right)x^2-1007\right]-2014\)
\(f\left(x\right)-g\left(x\right)-2014=\left(3x^2-5x-1\right)x^2+1007-\left(2x^2+3x\right)x^2+1007-2014\)
\(f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)-\left(2x^2+3x\right)\right]x^2+\left(1007+1007-2014\right)\)
\(f\left(x\right)-g\left(x\right)-2014=3x^2-5x-1-2x^2-3x\)
\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=x^2-2x-1=\left(x-1\right)^2\)
b)\(2014+g\left(x\right)-h\left(x\right)=f\left(x\right)\)
\(\Rightarrow-h\left(x\right)=f\left(x\right)-g\left(x\right)-2014\)
\(\Rightarrow-h\left(x\right)=\left(x-1\right)^2\)
\(\Rightarrow h\left(x\right)=-\left[\left(x-1\right)^2\right]\)
Chúc bạn học tốt
a,f(x)-g(x)+h(x)=2x-`1
b,đặt S(x)=f(x)-g(x)+h(x)
S(x)=0<=>2x+1=0=>x=\(\dfrac{-1}{2}\)
Lời giải:
a)
$f(x)-g(x)=x^3-2x^2+3x+1-(x^3+x-1)$
$=(x^3-x^3)-2x^2+(3x-x)+(1+1)=-2x^2+2x+2$
b)
$f(x)-g(x)+h(x)=0$
$-2x^2+2x+2+2x^2-1=0$
$2x+1=0$
$x=\frac{-1}{2}$
Vậy $x=\frac{-1}{2}$
mk bít làm nhưng dài quá nên làm biếng hihi!
654756
mik làm biếng nhưng học òi nên thuộc kết quả. kết quả là
654756
\(a.\) \(f\left(x\right)=x^3-2x^2+3x+1\)
\(-\)\(g\left(x\right)=x^3\) \(+x\) \(-1\)
\(+\)\(h\left(x\right)=\) \(3x^2\)\(-2x-3\)
\(-------\)
\(=\) \(-5x^2\) \(-1\)
a) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=x^3-2x^2+3x+1-\left(x^3+x-1\right)\)\(1\text{)}+3x^2-2x-3\)
\(=x^3-2x^2+3x+1-x^3-x+1+3x^2-2x-3\)
\(=\left(x^3-x^3\right)-\left(2x^2-3x^2\right)+\left(3x-2x-x\right)+\left(1+1-3\right)\)
\(=-5x^2-1\)