K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2019

a) Tính:

A(x) + B(x) = (5x - 2x4 + x3 - 5 + x2) + (-x4 + 4x2 - 3x3 + 7 - 6x)

                  = 5x - 2x4 + x3 - 5 + x2 + -x4 + 4x2 - 3x3 + 7 - 6x

                  = (5x - 6x) + (-2x4 - x4) + (x3 - 3x3) + (-5 + 7) + (x2 + 4x2)

                  = -x - x4 - 2x3 + 2 + 5x2 

A(x) - B(x) + C(x) = (5x - 2x4 + x3 - 5x + x2) - (-x4 + 4x2 - 3x3 + 7 - 6x) + (x + x3 - 2)

                            = 5x - 2x4 + x3 - 5 + x2 - -x4 - 4x2 + 3x3 - 7 + 6x + x + x3 - 2

                            = (5x + 6x + x) + [-2x4 + (-x4)] + (x3 + 3x3 + x3)  + (x2 - 4x2) + (-5 - 7 - 2)

                            = 12x - 3x+ 5x3 - 3x2 - 14

B(x) - C(x) - A(x) = (-x4 + 4x2 - 3x3 + 7 - 6x) - (x + x3 - 2) - (5x - 2x4 + x3 - 5 + x2

                           = -x4 + 4x2 - 3x3 + 7 - 6x - x - x3 + 2 - 5x + 2x4 - x3 + 5 - x2

                          = (-x4 + 2x4) + (4x2 - x2) + (-3x3 - x3 - x3) + (7 + 2 + 5) + (6x - x - 5x)

                          = x4 + 3x2 - x3 + 14 

C(x) - A(x) - B(x) = (x + x3 - 2) - (5x - 2x4 + x3 - 5 + x2) - (-x4 + 4x2 - 3x3 + 7 - 6x)

                           = x + x3 - 2 - 5x + 2x4 - x3 + 5 - x2 - -x4 - 4x2 + 3x3 - 7 - 6x

                           = (x - 5x - 6x) + (x3 - x3 + 3x3) + (-2 + 5 - 7) + (5x - 6x) + (-x2 - 4x2)

                           = -10x + 3x3 - 4 - x - 5

11 tháng 4 2019

Với x=1 thì đa thức A(x) có giá trị là:\(5\cdot1-2\cdot\left(1\right)^4+1^3-5+1^2\)

\(=5-2+1-5+1=0\)

=> x=1 là nghiệm.

Với x=1 thì đa thức B(x) có giá trị là:\(-\left(1\right)^4+4\cdot1^2-3\cdot1^3+7-6\cdot1\)

\(=-1+4-3+7-6=1\)

=> x=1 không phải là nghiệm.

Suy ra điều cần chứng minh

24 tháng 7 2019

a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)

\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)

\(=3x^4-5x^3-x^2+x-5\)

\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)

\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)

\(=x^4-x^3-x-1\)

24 tháng 7 2019

b) \(A\left(x\right)+B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)

\(=5x^4-6x^3-x^2-6\)

 \(A\left(x\right)-B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)

\(=2x^4-4x^3-x^2+2x-4\)

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bài 1: Cho đa thức M(x) = 4x3 + 2x4 – x2 – x3 + 2x2 – x4 + 1 – 3x3 a) Sắp xếp đa thức trên theo lỹ thừa giảm dần của biến b) Tính M(-1) và M(1) c) Chứng tỏ đa thức trên không có nghiệm Bài 2: Cho hai đa thức: P(x) = 2x2 + 6x4 – 3x3 + 2010 và Q(x) = 2x3 – 5x2 – 3x4 – 2011 a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến. b) Tính P(x) + Q(x) và P(x) – Q(x). c) Chứng tỏ x = 0...
Đọc tiếp

Bài 1: Cho đa thức M(x) = 4x3 + 2x4 – x2 – x3 + 2x2 – x4 + 1 – 3x3

a) Sắp xếp đa thức trên theo lỹ thừa giảm dần của biến

b) Tính M(-1) và M(1)

c) Chứng tỏ đa thức trên không có nghiệm

Bài 2: Cho hai đa thức: P(x) = 2x2 + 6x4 – 3x3 + 2010 và Q(x) = 2x3 – 5x2 – 3x4 – 2011

a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.

b) Tính P(x) + Q(x) và P(x) – Q(x).

c) Chứng tỏ x = 0 không phải là nghiệm của hai đa thức P(x) và Q(x).

Bài 3: Tìm nghiệm của đa thức:

a) P(x) = 4x – 1/2; b) Q(x) = (x-1)(x+1) c) A(x) = - 12x + 18

d) B(x) = -x2 + 16 e)C(x) = 3x2 + 12

Bài 4: Cho các đa thức: A(x) = 5x - 2x4 + x3 -5 + x2 ; B(x) = - x4 + 4x2 - 3x3 + 7 - 6x;

C(x) = x + x3 -2

a) Tính A(x) + B(x); b) A(x) - B(x) + C(x)

c) Chứng tỏ rằng x = 1 là nghiệm của A(x) và C(x) nhưng không phải là nghiệm của đa thức B(x).

<<< GIẢI GẤP CHO TỚ VỚI NHÉ ; CẦN LẮM >>>

........................CẦU XIN BẠN ĐẤY..................................

1
1 tháng 5 2018

1a, M(x)=\(x^4+x^2+1\)

b,M(-1)=(-1)\(^4\)+(-1)\(^2\)+1

=3

M(1)=(1)\(^4\)+(1)\(^2\)+1

=3

2a,P(x)=\(6x^4-3x^3+2x^2+2010\)

Q(x)=\(-3x^4+2x^3-5x^2-2011\)

b,P(x)+Q(x)=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011

=(6x\(^4\)-3x\(^4\))+(-3x\(^3\)+2x\(^3\))+(2x\(^2\)-5x\(^2\))+(2010-2011)

= 3x\(^4\)-x\(^3\)-3x\(^2\)-1

P(x)-Q(x)=(6x\(^4\)-3x\(^3\)+2x\(^2\)+2010)-(-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011)

=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010+3x\(^4\)-2x\(^3\)+5x\(^2\)+2011

=(6x\(^4\)+3x\(^4\))+(-3x\(^3\)-2x\(^3\))+(2x\(^2\)+5x\(^2\))+(2010+2011)

= \(9x^4-5x^3+7x^2+4021\)

3a,P(x)=0<=>4x-1/2=0<=>4x=1/2<=>x=1/8

vậy 1/8 là n\(_o\) của P(x)

b,Q(x)=0<=>(x-1)(x+1)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

vậy 1 và -1 là n\(_o\) của Q(x)

c,A(x)=0<=>-12x+18=0<=>-12x=-18<=>x=3/2

vậy 3/2 là n\(o\) của A(x)

d,B(x)=0<=>\(-x^2+16\)=0<=>-x\(^2\)=16<=>-(x)\(^2\)=-(\(\pm\)4)\(^2\)

<=>x=\(\pm\)4

vậy \(\pm\)4 là n\(_o\)củaB(x)

e,C(x)=0<=>3x\(^2\)+12=0<=>3x\(^2\)=-12<=>x\(^2\)=-4<=>x\(^2\)=-(4)\(^2\)

<=>x=4

vậy 4 là n\(_o\) của C(x)

2 tháng 5 2018

trả hiểu