Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\sqrt{3}+1}{\sqrt{3}+1}+\sqrt{5}+3-3-\sqrt{5}=1\)
b: \(B=\dfrac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{x-9}=\dfrac{-4\sqrt{x}-12}{x-9}=\dfrac{-4}{\sqrt{x}-3}\)
Để B>1 thì \(\dfrac{-4-\sqrt{x}+3}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay 0<x<9
a:
Sửa đề: \(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(C=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{x-9}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}-x-9}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}}{2\sqrt{x}+4}\)
\(=-\dfrac{3\sqrt{x}}{2\sqrt{x}+4}\)
b: Để C<-1 thì C+1<0
=>-3 căn x+2 căn x+4<0
=>-căn x<-4
=>x>16
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{8\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+8}{\sqrt{x}-3}\)
Do \(A>0\) \(\forall x\ge0\Rightarrow\)để P xác định thì \(B\ge0\Rightarrow x>9\)
\(\Rightarrow P=\sqrt{\dfrac{\sqrt{x}+8}{\sqrt{x}-3}.\dfrac{x+7}{\sqrt{x}+8}}=\sqrt{\dfrac{x+7}{\sqrt{x}-3}}=\sqrt{\sqrt{x}+3+\dfrac{16}{\sqrt{x}-3}}\)
\(\Rightarrow P=\sqrt{\sqrt{x}-3+\dfrac{16}{\sqrt{x}-3}+6}\ge\sqrt{2\sqrt{\dfrac{16\left(\sqrt{x}-3\right)}{\sqrt{x}-3}}+6}=\sqrt{14}\)
\(\Rightarrow P_{min}=\sqrt{14}\) khi \(x=49\)
1: Khi x=36 thì \(A=\dfrac{7\cdot6+2}{2\cdot6+1}=\dfrac{44}{13}\)
2: \(B=\dfrac{x+6\sqrt{x}+9+x-6\sqrt{x}+9-36}{x-9}\)
\(=\dfrac{2x-18}{x-9}=2\)
3: \(P=A-B=\dfrac{7\sqrt{x}+2-4\sqrt{x}-2}{2\sqrt{x}+1}=\dfrac{3\sqrt{x}}{2\sqrt{x}+1}\)
Để P là số tự nhiên thì \(3\sqrt{x}⋮2\sqrt{x}+1\)
\(\Leftrightarrow6\sqrt{x}+3-3⋮2\sqrt{x}+1\)
\(\Leftrightarrow2\sqrt{x}+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(=\dfrac{-6}{\sqrt{x}+3}\)
b: Để A<-1/2 thì A+1/2<0
\(\Leftrightarrow-\dfrac{6}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)
\(\Leftrightarrow-12+\sqrt{x}+3< 0\)
=>0<x<81 và x<>9
a, \(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{x-9}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{x+5\sqrt{x}}{x-25}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-5}\)
b, ĐK: \(x\ge0,x\ne9,x\ne25\)
\(P=\dfrac{A}{B}\Leftrightarrow P=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{\sqrt{x}}{\sqrt{x}-5}\)\(\Leftrightarrow P=\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\)
Xét hiệu \(P-1=\dfrac{\sqrt{x}+3}{\sqrt{x}-5}-1=\dfrac{\sqrt{x}+3-\sqrt{x}+5}{\sqrt{x}-5}=\dfrac{8}{\sqrt{x}-5}\)
Ta có: \(x\ge0\forall x\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}-5\ge0\)\(\Rightarrow P-1>0\Leftrightarrow P>1\)
Bài 2:
a: \(A=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{x-25}=\dfrac{\sqrt{x}}{\sqrt{x}-5}\)
b: \(P=A:B=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{\sqrt{x}}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(P-1=\dfrac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{-8}{\sqrt{x}+3}< 0\)
=>P<1
a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)
b: \P=A:B
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)
Dấu = xảy ra khi x=0