Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. S3 = 165 + 215 chia hết cho 33
ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
b. S2 = 2 + 22 + 23 + 24 +........... + 2100 chia hết cho 31
= 2(1 + 2 + 22 + 23 + 24 ) + 26( 1 + 2 + 22 + 23 + 24 ) + ....+ (1 + 2 + 22 + 23 + 24 )296
= 2 x 31 + 26 x 31 + ..... + 296 x 31 = 31 x ( 2 + 26 + ..... + 296 )
=> 2 + 22 + 23 + 24 +........... + 2100 chia hết cho 31
đặt A = tổng trên
A=(5+52)+(53+54)+...+(59+510)
A=5(5+1)+53(1+5)+...+59(1+5)
A=5.6+53.6+...+59.6
A=6.(5+53+...+59) luôn chia hết cho 6
vậy...
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))
quên, còn bài chứng minh!ahihi
Bài 2:
ta có:
A = \(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(...\right)\)( nếu vít nốt 3 số cuối thì ko đủ nên tự bn điền ha)
A =\(\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+\left(...\right)\)
A=\(13+3^3.13+...+3^{1998}.13\)
A=\(13.\left(1+3^3+...+3^{1998}\right)⋮13\)
suy ra A chia hết cho 13
a) đặt A =\(1+2+2^2+...+2^{99}\)
ta có:
2A = \(2+2^2+2^3+...+2^{99}+2^{100}\)
2A-A=\(\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
2A-A=\(2+2^2+...+2^{100}-1-2-...-2^{99}\)
A=\(2^{100}-1-2^{99}\)
ukm lâu r ko hay làm mấy bài dạng ntn nên mk quên rùi, ko pik đúng ko! v nên có sai cũng đừng ném gạch bn nhé! mấy bài sau làm tương tự!
a)A=\(\frac{\left(8+100\right).\left[\left(100-8\right):4+1\right]}{2}=\frac{108.242}{2}=13068\)
b) \(5B=5^2+5^3+...+5^{101}\)
\(5B-B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2) [vì có 99 số hạng chia hết cho 3]
=31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31
B=1+5+52+53+...+596+597+598
=(1+5+52)+(53+54+55)+...+(596+597+598)
=31+53.(1+5+52)+...+596.(1+5+52)
=31+53.31+...+596.31
=31.(1+53+...+596)
=>B chia hết cho 31
nhóm (5+52+53) lại rồi tiếp tục nhóm các số còn lại như vậy ta sẽ có thừa số chung là 31 và chia hết cho 31
đầy đủ S= (5+52+53)+ .....+( 52014+52015+52016)
= 5( 1+5+52)+.....+52014( 1+5+52)
= (5+...+52014 ) ( 1+5+52)
= (5+...+52014)31 chia hết cho 31
S = 5 + 52 + 53 + 54 +.........+ 52016
S = ( 5 + 52 + 53 )+( 54 + 55 + 56 )+...........+ ( 52014 + 52015 +5 2016)
S = 5 * (1+ 5 +52 )+ 54 * (1+5+52) + .........+ 52014 * (1 + 5 + 52 )
S = 5 * 31 + 54 * 31 + .........+ 22014 * 31
S = 31 * (5 + 54 + .........+ 52014 )
Vì trong tích có thừa số chia hết cho 31 nên tích đó chia hết cho 31
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)