Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 4C = 4.( 1 + 4 + 42 + 43 + ... + 4100 )
<=> 4C = 4 + 42 + 43 + 44 + ..... + 4101
<=> 4C - C = ( 4 + 42 + 43 + 44 + ... + 4101 ) - ( 1 + 4 + 42 + 43 + ..... + 4100 )
<=> 3C = 4101 - 1
=> C = ( 4101 - 1 ) : 3
B : 3 = 4101 : 3
Vì ( 4101 - 1 ) : 3 < 4101 : 3 => C < B
Vậy C < B
<=> 4C = 4.( 1 + 4 + 42 + 43 + .... + 4100 )
<=> 4C = 4 + 42 + 43 + 44 + ..... + 4101
<=> 4C -C = ( 4 + 42 + 43 + 44 + ..... + 4101 ) - ( 1 + 4 + 42 + 43 + .... + 4100 )
<=> 3C = 4101 - 1
=> C = ( 4101 - 1 ) : 3
B : 3 = 4101 : 3
Vì ( 4101 - 1 ) : 3 < 4101 : 3 => C < B : 3
Vậy C < B : 3
4c=4+4^2+4^3+..+4^101
=>4c-c=(4+4^2+4^3+...+4^101)-(1+4+4^2+..+4^100)
=>3c=4^101-1
=>c=(4^101-1)/3
Mà b=4^101=>b/3=4^101/3
Ta thấy c=(4^101-1)/3<b/3=4^101/3
=>c<b/3(đpcm)
Tick đi
\(T=3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3T=3^2+3^3+3^4+....+3^{100}\)
\(\Rightarrow3T-T=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+....+3^{99}\right)\)
\(\Rightarrow2T=3^{100}-3\)
\(\Rightarrow2T+3=3^{2n}=2.\frac{3^{100}-3}{2}+3=3^{2n}\)
\(\Rightarrow3^{100}-3+3=3^x\)
\(\Rightarrow3^{100}=3^x\)
\(\Rightarrow x=100\)
a)3T=3(3+32+...+399)
3T=32+33+...+3100
3T-T=(32+33+...+3100)-(3+32+...+399)
2T=3100-3.THay vào ta được 3100-3+3=32n
=>3100=32n =>100=2n =>n=50
b)5A=5(52+53+...+52012)
5A=53+54+...+52013
5A-A=(53+54+...+52013)-(52+53+...+52012)
4A=52013-52.Thay vào ta được :52013-52+25=52013 là 1 lũy thừa của 5
-->Đpcm
c)4C=4(1+4+...+4100)
4C=4+42+...+4101
4C-C=(4+42+...+4101)-(1+4+...+4100)
3C=4101-1 suy ra \(C=\frac{4^{101}-1}{3}\).Với \(\frac{B}{3}=\frac{4^{101}}{3}>\frac{4^{101}-1}{3}=C\)
-->Đpcm
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{101}{3^{101}}\) (1)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}+\frac{101}{3^{102}}\) (2)
Trừ (1) cho (2):
\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}-\frac{101}{3^{102}}=B-\frac{101}{3^{102}}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\)
\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}+\frac{1}{3^{102}}\)
\(\Rightarrow\frac{1}{3}B+\frac{1}{3}-\frac{1}{3^{102}}=\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{101}}=B\)
\(\Rightarrow\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{102}}\Rightarrow B=\frac{1}{2}\left(1-\frac{1}{3^{101}}\right)=\frac{1}{2}-\frac{1}{2.3^{101}}\Rightarrow B< \frac{1}{2}\)
\(\Rightarrow A=\frac{3}{2}\left(B-\frac{101}{3^{102}}\right)< \frac{3}{2}B< \frac{3}{2}.\frac{1}{2}=\frac{3}{4}\)
yes đơn giản
ta có C=1+4+4^2+........+4^100
4C=4+4^2+4^3+...+4^101
4C-C=3C=4^101-1
C=(4^101-1)/3
VẬY C<B/3