Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=1+4+4^2+4^3+...+4^20
C=(1+4^1+4^2)+(4^3+4^4+4^5)+...+(4^18+4^19+4^20)
C=1(1+4+16)+4^3(1+4+16)+...+4^18(1+4+16)
C=1x21+4^3x21+...+4^18x21
C=21x(1+4^3+...+4^18)
Suy ra C chia hết cho 21
cho c=1+4+4^1+4^2+4^3+4^4+...+4^20
chứng minh rằng c chia hết cho 21
Được cập nhật {timing(2017-08-22 17:07:28)}
Toán lớp 6
Hỏa Long Natsu 2005 10 giây trước (17:16)
Thống kê hỏi đáp
Báo cáo sai phạm
C=1+4+4^2+4^3+...+4^20
C=(1+4^1+4^2)+(4^3+4^4+4^5)+...+(4^18+4^19+4^20)
C=1(1+4+16)+4^3(1+4+16)+...+4^18(1+4+16)
C=1x21+4^3x21+...+4^18x21
C=21x(1+4^3+...+4^18)
<=> C\(⋮\) 21
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 60 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
\(B=\left(1+4+4^2\right)+...+\left(4^{66}+4^{67}+4^{68}\right)=21.1+...+21.4^{66}\)
\(B=21.\left(1+...+4^{66}\right)\)
Vậy tổng chia hết cho 21
4 + 42+43+44+45+....+419+420
=(4 + 4^2 )+( 4^3+4^4) +...+(4^19 + 4^20)
=4.(1 + 4 ) + 43 . ( 1 + 4 ) + ... + 418 . ( 1 + 4 )
= 4 . 5 + 43 . 5 + ... + 418 .5
= ( 4 + 43 + 418) . 5
=> 4 + 42+43+44+45+....+419+420 chia hết cho 5
Chúc bạn học tốt !
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=1.21+4^3.21+...+4^57.21
A=(1+4^3+...+4^57).21
Vậy A chia hết cho 21
C= 4(1+4+4^2+4^3+4^4+...+4^59)
C= 4+4^2+4^3+4^4+...+4^59
C=(4.1+4.4+4.4^2) +(4^3.1+4^3.4+4^3.4^2) +... +(4^57.1+4^57.4+4^57.4^2)
C= 4.(1+4+16) +4^3(1+4+16) +... +4^57.(1+4+16)
C=4.21 + 4^3.21+4^57.21
Suy ra C chia hết cho 21
Ta có : B=1+4+4^2+4^3+...+4^2012
=>4B=4(1+4+4^2+4^3+...+4^2012)=4+4^2+4^3+4^4+...+4^2013
=>4B-B=(4+4^2+4^3+4^4+...+4^2013)-(1+4+4^2+4^3+...+4^2012)
=>3B=4^2013-1
Ta có 4^2013=(4^3)^671
Mà 4^3=64 chia cho 21 dư 1
=>(4^3)^671 chia cho 21 dư 1
=>(4^3)^671 -1 chia hết cho 21
Hay 4^2013-1 chia hết cho 21
=>3B chia hết cho 21
Mặt khác lại có:4^2013-1 > 63
=> 3B>3 nhân với 21
B>21(1)
Mà 3B chia hết cho 21(2)
Từ (1) và (2)=>B chia hết cho 21
Vậy ........................................
k cho mình nha
\(C=1+4+4^2+4^3+4^4+....+4^{20}\)
\(C=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{18}+4^{19}+4^{20}\right)\)
\(C=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{18}\left(1+4+4^2\right)\)
\(C=\left(1+4+4^2\right)\left(1+4^3+...+4^{18}\right)\)
\(C=21.\left(1+4^3+...+4^{18}\right)\)
Vì 21 chia hết cho 21 nên \(21.\left(1+4^3+...+4^{18}\right)\) chia hết cho 21(đpcm)
Chúc bạn học tốt!!!
\(C=1+4+4^1+4^2+4^3+4^4+...+4^{20}\)
\(C=\left(1+4+4^2\right)+\left(4^2+4^3+4^4\right)+...+\left(4^{18}+4^{19}+4^{20}\right)\) \(C=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{18}.\left(1+4+4^2\right)\)
\(C=\left(1+4+4^2\right).\left(1+4^3+...+4^{18}\right)\)
\(C=21.\left(1+4^3+...+4^{18}\right)\)
Vì \(21⋮21\) \(\Rightarrow21.\left(1+4^3+...+4^{18}\right)\)
Vậy \(C⋮21\)