Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn bảo bọn mình cm thế nào? Bạn phải đưa ra đẳng thức hoặc bất đẳng thức chứ!
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
vì b>0 ,d>0 ,a/b<c/d
suy ra ad<bc
suy ra ad+ab<bc+ab
suy ra a(b+d) <b(a+c)suy ra a/b <a+c/b+d
lại có ad <bc suy ra ad+cd <bc+cd
suy ra d(a+c )<c(b+d)suy ra a+c/b+d <c/d
vậy a/b <a+c/b+d<c/d
Xét với mọi n > 2 , ta có \(\frac{n}{n+2}< \frac{n-1}{n}\) (vì \(n^2< n^2+n-2\))
Áp dụng : \(A=\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.\frac{10}{12}...\frac{208}{210}< \frac{1}{3}.\frac{3}{4}.\frac{6}{7}.\frac{9}{10}...\frac{207}{208}\)
Suy ra : \(A^2< \frac{1.4.7.10...208}{3.6.9.12...210}.\frac{1.3.6.9...207}{3.4.7.10...208}=\frac{1}{210}.\frac{1}{3}=\frac{1}{630}< \frac{1}{625}=\left(\frac{1}{25}\right)^2\)
Do đó \(A< \frac{1}{25}\)
Ta có:
112 =1;122 <11.2 ;132 <12.3 ;...;1502 <149.50
=>A=112 +122 +132 +...+1502 <1+(11.2 +12.3 +...+149.50 )
=1+(1−12 +12 −13 +...+149 −150 )
=1+(1−150 )
=1+1−150
=2−150 <2
=> A < 2
Ta có:
C=\(\dfrac{1}{3}.\dfrac{4}{6}.\dfrac{7}{9}..........\dfrac{208}{210}\)<\(\dfrac{1}{3}.\dfrac{3}{4}.\dfrac{6}{7}.......\dfrac{207}{208}\)
\(\Rightarrow\)C2<\(\dfrac{1}{3}.\dfrac{4}{6}.\dfrac{7}{9}..........\dfrac{208}{210}\).\(\dfrac{1}{3}.\dfrac{3}{4}.\dfrac{6}{7}.......\dfrac{207}{208}\)
\(\Rightarrow\)C2<\(\dfrac{1.4.7........208}{3.6.9........210}\).\(\dfrac{1.3.6.9........207}{3.4.7........208}\)
\(\Rightarrow\)C2<\(\dfrac{1}{210}.\dfrac{1}{3}\)=\(\dfrac{1}{630}< \dfrac{1}{625}\)
\(\Rightarrow\)C<\(\dfrac{1}{25}\)(đpcm)