Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=1/1x2 + 1/2x3 + 1/3x4 + ... + 1/99x100
=(1 -1/2) +(1/2 -1/3) +(1/3 - 1/4) +......+(1/99 - 1/100)
(gạch bỏ -1/2 và 1/2 ; -1/3 và 1/3 ; .........-1/99 và 1/99)
=1-1/100
=99/100
Ta có:
1/2=50/100
vì 99/100>50/100
nên C>1/2
C = 1/2.3 + 1/ 3.4 + 1/4.5 + ... + 1/99.100
= (1/2-1/3) + (1/3-1/4) + (1/4-1/5) + ... + (1/99-1/100)
= 1/2-1/100
= 49/100
so sánh 49/100 với 1/2
49/100 với 50/100
=) 49/100 < 1/2 (vì 49/100 < 50/100)
chúc bn học tốt
B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)
B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)
B= 1/2 +1/100=51/100
k mk nhóe
sai thì chỉ mk nhoa
a)A=1/51+1/52+...+1/100
=>A>1/100+1/100+...+1/100
=>A>50/100(vì có 50 số hạng)
=> A>1/2
b)Ta có:
B=1/2.3+1/3.4+...+1/99.100
=> B=1/2-1/3+1/3-1/4+...+1/99-1/100
=> B=1/2-1/100
Mà 1/100>0
=> B<1/2
=> B<1/2<A
=>B<A
sud kênh Mik ủng hộ với tên kênh là M.ichibi
kênh làm về MINECRAFT
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
tự tính
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3^9.5^2.5^3}{3.5.5^4.3^8}=\frac{3^9.5^5}{3^9.5^5}=1\)
c) \(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}=\frac{2^{50}.3^{16}\left(3^{45}+2^{40}\right)}{2^{51}.3^{16}\left(3^{45}+2^{40}\right)}=\frac{1}{2}\)
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2\)
\(=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2\)
\(=\frac{1}{100}+\frac{121}{100}=\frac{122}{100}=\frac{61}{50}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\Rightarrow C>\frac{1}{2}\)
Ta có : \(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy \(C< \frac{1}{2}\)