Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}a,b\ge0\\a.b\ne1\end{matrix}\right.\)
a ) \(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)-\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)+\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}\)
\(=\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}.\dfrac{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}\)
\(=\dfrac{2a\sqrt{b}+2\sqrt{ab}}{-2\sqrt{a}-2}=-\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{2\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)
Câu b : Ta có : \(b=\dfrac{\sqrt{3}-1}{1+\sqrt{3}}=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{3-2\sqrt{3}+1}{2}=2-\sqrt{3}\)
\(P=-\sqrt{ab}=-\sqrt{\left(2-\sqrt{3}\right)^2}=-\left|2-\sqrt{3}\right|=\sqrt{3}-2\)
Câu c : \(\sqrt{a}+\sqrt{b}=4\Rightarrow\sqrt{a}=4-\sqrt{b}\)
\(P=-\sqrt{ab}=-\left(4-\sqrt{b}\right)\sqrt{b}=b-4\sqrt{b}=\left(\sqrt{b}-2\right)^2-4\ge-4\)
Vậy GTNN của P là -4 . Dấu bằng xảy ra khi \(a=b=4\)
Áp dụng BĐT Cô-si:
\(A\le\dfrac{a+b}{2\sqrt{c+ab}}+\dfrac{b+c}{2\sqrt{a+bc}}+\dfrac{c+a}{2\sqrt{b+ac}}\)\(\le\dfrac{a+b}{2\sqrt{2\sqrt{abc}}}+\dfrac{b+c}{2\sqrt{2\sqrt{abc}}}+\dfrac{c+a}{2\sqrt{2\sqrt{abc}}}\)\(=\dfrac{a+b+c}{\sqrt[4]{4abc}}=\dfrac{1}{\sqrt[4]{4abc}}\ge\dfrac{1}{\sqrt{\left(a+b+c\right).\dfrac{2}{3}}}\)(BĐT Cô-si)\(=\dfrac{1}{\sqrt{\dfrac{2}{3}}}=\dfrac{\sqrt{6}}{2}\)
Vậy Amin=\(\dfrac{\sqrt{6}}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)
a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)
\(=a-1\)
b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)
c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)
b:
1: ĐKXĐ: a>0; a<>1
2: \(A=\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)
\(=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)
\(=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a}{\sqrt{a}+1}=\sqrt{a}\left(\sqrt{a}-1\right)\)
3: \(A=a-\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu '=' xảy ra khi a=1/4
ĐK: \(ab\ge0\)
\(P=\left(\dfrac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}\right):\left(\dfrac{-2a\sqrt{b}-2\sqrt{ab}}{ab-1}\right)\)
\(P=-1.\)
\(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)\(P=\left[\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}+\dfrac{\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}-\dfrac{ab-1}{ab-1}\right]:\left[\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}-\dfrac{\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}+\dfrac{ab-1}{ab-1}\right]\)\(P=\dfrac{\left(a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1\right)+\left(ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}\right)-\left(ab-1\right)}{ab-1}:\dfrac{\left(a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1\right)-\left(ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}\right)+\left(ab-1\right)}{ab-1}\)\(P=\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{ab-1}:\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{ }\)\(P=\dfrac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}:\dfrac{-2\sqrt{a}-2}{ab-1}\)
\(P=\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{ab-1}.\dfrac{ab-1}{-2\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)
khuya rồi để mai đi